DST/Tuple Maker



DSTs:

How it works:

» generates ROOT file using C++ API that contains rough summary of all final
particles/collections from recon file

Advantages:

* Multiple collections stored in single file (access to tracks, clusters separate from
vertex collections)

* Robust way to look at full event picture

Things to consider:

* No easy way to look at vertexed particles in different constrained collections
(comparing unc and bsc vertex collections)

* Not easy to make plots from the ROOT command line

e Significant development of analysis codes using DST offline

How I've used it:

e 3 prong studies, WAB studies

Experience:

 Cumbersome to get libraries and everything working well



Tuples:

How it works:

» Add variables directly in hps-java, run over recon/skim files, outputs tridents,
mollers, and fee tuples.

Advantages:

e Fast running on recon files, runs easily using hps-java framework

e Contains relevant collections

e Easy to plot stuff from the command line

Things to consider:

* Only contains relevant collections (not useful for WAB studies)

* |f you need something, may have to go back to hps-java to add it

How I've used it:

* Vertex analysis, timing calibration

Experience:

e Easy if you know how to use hps-java



Key Points:

 We absolutely need both! They serve different purposes
 The DSTs are a robust way to study events. Current bump hunt codes use this.

 The Tuples are very accessible if you need to add variables, study event anomalies, and
look at the effects of different vertex constraints

* Both are maintained in GitHub
* |If you want to add/change something in the TupleMaker, then just make an issue in

GitHub, and follow standard HPS coding (if you know how to use hps-java, then it’s
pretty easy)



