
AMBIGUITY RESOLVER
MIRIAM DIAMOND

JUNE 5 2016

github issue 65

Definition:

• Chooses between multiple tracks, only one of which is likely to be real

• May impose track quality requirements

• May perform “track cleaning” (i.e. discarding outlier hits)

CURRENT SITUATION IN HPS SOFTWARE

 hps-tracking ► src/main/java ► org.hps.recon.tracking►
MergeTrackCollections driver runs after GBL

 Performs only most basic ambiguity resolving tasks: removal of
duplicate and partial tracks

 Duplicates: were formed using different strategies

 “Partial”: entire track is an exact subset of a longer track in the collection

 Further ambiguity resolving tasks performed ad hoc by individual
analyses

2

AMBIGUITY RESOLVER ABSTRACT CLASS

 public get methods for internal state lists

 public void resetResolver()

 public void resolve()

 public double scoreTrack(Track track)

 protected int[] holesOnTrack(Track trk)

 protected boolean areShared(Track trk1, Track trk2)

Internal state lists

hps-tracking ►

src/main/java ►

org.hps.recon.tracking►

AmbiguityResolver.java

Various ambiguity resolvers

can inherit from this class

Can be called by

MergeTrackCollections

3

SIMPLE AMBIGUITY RESOLVER

 Can be configured to replicate behaviour of old MergeTrackCollections

 Has a few more features as well

 Modes:

 Remove duplicates

 Remove partials

 For tracks with too many shared hits (adjustable threshold), keep only the best-scoring track

 Remove any tracks with poor score (adjustable threshold)

 Score = χ2/dof

hps-tracking ► src/main/java ► org.hps.recon.tracking► SimpleAmbiguityResolver.java

4

CLASSIC AMBIGUITY RESOLVER

 Simplified version of ATLAS Ambiguity Processor

 Remove duplicates, then score all tracks

 Loop through tracks, starting with highest-scoring tracks. For each track, remove all lower-
scoring tracks that share too many hits (adjustable threshold) with it

 Scoring system:

 (adjustable by layer) points for each unshared hit

 (adjustable by layer) points for each shared hit

 (adjustable by layer) penalty for each hole

 (adjustable by layer) penalty for going outside layer acceptance

 define cumProb = ChisqProb.gammp(track.getNDF(), track.getChi2())

 if better than (adjustable) threshold, add (adjustable factor) x | log10(cumProb) | to score

 otherwise, subtract (adjustable) penalty from score

hps-tracking ► src/main/java ► org.hps.recon.tracking► ClassicAmbiguityResolver.java

5

CLASSIC AMBIGUITY RESOLVER

 Scoring system requires determination of holes and missed-acceptances,

taking into account bad channels

 Facilitated by new AcceptanceHelper class in hps-tracking ►

src/main/java ► org.hps.recon.tracking

 protected boolean isWithinAcceptance(Track trk, int layer)

 public int findIntersectingChannel(Hep3Vector trackPosition, SiSensor sensor)

6

POSSIBILITIES FOR MORE AMBIGUITY RESOLVERS

 Classic + Track-cleaning

 Requires outlier detection

 May include hit recovery (for holes)

 Classic + Cluster-sharing probability

 Takes into account probability that a given cluster is shared, based on cluster properties

 Classic + Hit timing

 Includes hit timing in χ2 in scoring

 Simulated Annealing

 Designed for “left/right” ambiguity resolution between tracks that share many hits

 Elastic Neural Net

 Probably overkill
7

TESTING SIMPLE AMBIGUITY RESOLVER

 Made new version of MergeTrackCollections with SimpleAmbiguityResolver

 Created hps-tracking ► src/test/java ► org.hps.recon.tracking ► MergeTrackCollectionsTest

to perform raw → reconstructed lcio with old vs new MergeTrackCollections

 Examined reco lcio’s using DQM : plots look the same  8

TESTING CLASSIC AMBIGUITY RESOLVER:

ACCEPTANCE HELPER

 hps-users ► src/main/java ► org.hps.users.mdiamond► HoleCreationDriver

 From each track in reco lcio file:

1. Removes hits (makes holes) on track according to pre-set pattern, or at random

2. Makes new TrackerHitCollection, RawTrackerHitCollection, HelicalTrackHitCollection,

and RotatedHelicalTrackHitCollection that exclude those hits

 Outputs to new reco lcio file

 ClassicAmbiguityResolver’s holesOnTrack, using AcceptanceHelper, correctly

identified holes in tracks in new lcio 

9

TESTING CLASSIC AMBIGUITY RESOLVER:

MC SAMPLE OF 700 A’ EVENTS

Tracks/event

Before resolving

Tracks/event

After resolving

10

TESTING CLASSIC AMBIGUITY RESOLVER:

MC SAMPLE OF 700 A’ EVENTS

Track scores

Before resolving

(1114 tracks)

Track scores

After resolving

(1045 tracks)

11

TESTING CLASSIC AMBIGUITY RESOLVER:

MC SAMPLE OF 700 A’ EVENTS

Hits/track

Before resolving

(1114 tracks)

Hits/track

After resolving

(1045 tracks)

Shared hits/track

Before resolving

(1114 tracks)

12

TESTING CLASSIC AMBIGUITY RESOLVER:

MC SAMPLE OF 900 TRITRIG EVENTS

Tracks/event

Before resolving

Tracks/event

After resolving

13

TESTING CLASSIC AMBIGUITY RESOLVER:

MC SAMPLE OF 900 TRITRIG EVENTS

Track scores

Before resolving

(1554 tracks)

Track scores

After resolving

(1520 tracks)

14

TESTING CLASSIC AMBIGUITY RESOLVER:

MC SAMPLE OF 900 TRITRIG EVENTS

Hits/track

Before resolving

(1114 tracks)

Hits/track

After resolving

(1520 tracks)

Shared hits/track

Before resolving

(1554 tracks)

15

IDEAS FOR STUDIES & TESTING ?

 Events that share all but one or two hits

 Generate from scratch, using particle gun with two very-nearby particles

 Artificially high-multiplicity events

 How to generate?

 Optimizing parameters in track-scoring

 How? Data-driven or MC-driven?

 High-statistics runs

 On what?

16

TRACK CANDIDATE IDENTIFICATION:

PRIORITIES FOR IMPROVEMENT
JUNE 5 2016

I THINK WE HAVE TWO OPTIONS …

1. Improve the existing framework

 optimize sectoring scheme

 optimize triplet-finding in SeedTrackFinder/FastCheck, using common ATLAS/CMS algorithms

 improve track seed extension/confirmation/re-fitting in ConfirmerExtender, probably with Kalman
filtering techniques

 fix/eliminate slow helix-plane intersection finding, identified by Maurik

2. Replace existing framework with cellular automaton + track-following system

 optimize pair-finding

 use hit pairs as units of the cellular automaton

 implement track-following to "jump over holes" (which cellular automaton can't do by itself)

18

