
AMBIGUITY RESOLVER
MIRIAM DIAMOND

JUNE 5 2016

github issue 65

Definition:

• Chooses between multiple tracks, only one of which is likely to be real

• May impose track quality requirements

• May perform “track cleaning” (i.e. discarding outlier hits)

CURRENT SITUATION IN HPS SOFTWARE

 hps-tracking ► src/main/java ► org.hps.recon.tracking►
MergeTrackCollections driver runs after GBL

 Performs only most basic ambiguity resolving tasks: removal of
duplicate and partial tracks

 Duplicates: were formed using different strategies

 “Partial”: entire track is an exact subset of a longer track in the collection

 Further ambiguity resolving tasks performed ad hoc by individual
analyses

2

AMBIGUITY RESOLVER ABSTRACT CLASS

 public get methods for internal state lists

 public void resetResolver()

 public void resolve()

 public double scoreTrack(Track track)

 protected int[] holesOnTrack(Track trk)

 protected boolean areShared(Track trk1, Track trk2)

Internal state lists

hps-tracking ►

src/main/java ►

org.hps.recon.tracking►

AmbiguityResolver.java

Various ambiguity resolvers

can inherit from this class

Can be called by

MergeTrackCollections

3

SIMPLE AMBIGUITY RESOLVER

 Can be configured to replicate behaviour of old MergeTrackCollections

 Has a few more features as well

 Modes:

 Remove duplicates

 Remove partials

 For tracks with too many shared hits (adjustable threshold), keep only the best-scoring track

 Remove any tracks with poor score (adjustable threshold)

 Score = χ2/dof

hps-tracking ► src/main/java ► org.hps.recon.tracking► SimpleAmbiguityResolver.java

4

CLASSIC AMBIGUITY RESOLVER

 Simplified version of ATLAS Ambiguity Processor

 Remove duplicates, then score all tracks

 Loop through tracks, starting with highest-scoring tracks. For each track, remove all lower-
scoring tracks that share too many hits (adjustable threshold) with it

 Scoring system:

 (adjustable by layer) points for each unshared hit

 (adjustable by layer) points for each shared hit

 (adjustable by layer) penalty for each hole

 (adjustable by layer) penalty for going outside layer acceptance

 define cumProb = ChisqProb.gammp(track.getNDF(), track.getChi2())

 if better than (adjustable) threshold, add (adjustable factor) x | log10(cumProb) | to score

 otherwise, subtract (adjustable) penalty from score

hps-tracking ► src/main/java ► org.hps.recon.tracking► ClassicAmbiguityResolver.java

5

CLASSIC AMBIGUITY RESOLVER

 Scoring system requires determination of holes and missed-acceptances,

taking into account bad channels

 Facilitated by new AcceptanceHelper class in hps-tracking ►

src/main/java ► org.hps.recon.tracking

 protected boolean isWithinAcceptance(Track trk, int layer)

 public int findIntersectingChannel(Hep3Vector trackPosition, SiSensor sensor)

6

POSSIBILITIES FOR MORE AMBIGUITY RESOLVERS

 Classic + Track-cleaning

 Requires outlier detection

 May include hit recovery (for holes)

 Classic + Cluster-sharing probability

 Takes into account probability that a given cluster is shared, based on cluster properties

 Classic + Hit timing

 Includes hit timing in χ2 in scoring

 Simulated Annealing

 Designed for “left/right” ambiguity resolution between tracks that share many hits

 Elastic Neural Net

 Probably overkill
7

TESTING SIMPLE AMBIGUITY RESOLVER

 Made new version of MergeTrackCollections with SimpleAmbiguityResolver

 Created hps-tracking ► src/test/java ► org.hps.recon.tracking ► MergeTrackCollectionsTest

to perform raw → reconstructed lcio with old vs new MergeTrackCollections

 Examined reco lcio’s using DQM : plots look the same 8

TESTING CLASSIC AMBIGUITY RESOLVER:

ACCEPTANCE HELPER

 hps-users ► src/main/java ► org.hps.users.mdiamond► HoleCreationDriver

 From each track in reco lcio file:

1. Removes hits (makes holes) on track according to pre-set pattern, or at random

2. Makes new TrackerHitCollection, RawTrackerHitCollection, HelicalTrackHitCollection,

and RotatedHelicalTrackHitCollection that exclude those hits

 Outputs to new reco lcio file

 ClassicAmbiguityResolver’s holesOnTrack, using AcceptanceHelper, correctly

identified holes in tracks in new lcio

9

TESTING CLASSIC AMBIGUITY RESOLVER:

MC SAMPLE OF 700 A’ EVENTS

Tracks/event

Before resolving

Tracks/event

After resolving

10

TESTING CLASSIC AMBIGUITY RESOLVER:

MC SAMPLE OF 700 A’ EVENTS

Track scores

Before resolving

(1114 tracks)

Track scores

After resolving

(1045 tracks)

11

TESTING CLASSIC AMBIGUITY RESOLVER:

MC SAMPLE OF 700 A’ EVENTS

Hits/track

Before resolving

(1114 tracks)

Hits/track

After resolving

(1045 tracks)

Shared hits/track

Before resolving

(1114 tracks)

12

TESTING CLASSIC AMBIGUITY RESOLVER:

MC SAMPLE OF 900 TRITRIG EVENTS

Tracks/event

Before resolving

Tracks/event

After resolving

13

TESTING CLASSIC AMBIGUITY RESOLVER:

MC SAMPLE OF 900 TRITRIG EVENTS

Track scores

Before resolving

(1554 tracks)

Track scores

After resolving

(1520 tracks)

14

TESTING CLASSIC AMBIGUITY RESOLVER:

MC SAMPLE OF 900 TRITRIG EVENTS

Hits/track

Before resolving

(1114 tracks)

Hits/track

After resolving

(1520 tracks)

Shared hits/track

Before resolving

(1554 tracks)

15

IDEAS FOR STUDIES & TESTING ?

 Events that share all but one or two hits

 Generate from scratch, using particle gun with two very-nearby particles

 Artificially high-multiplicity events

 How to generate?

 Optimizing parameters in track-scoring

 How? Data-driven or MC-driven?

 High-statistics runs

 On what?

16

TRACK CANDIDATE IDENTIFICATION:

PRIORITIES FOR IMPROVEMENT
JUNE 5 2016

I THINK WE HAVE TWO OPTIONS …

1. Improve the existing framework

 optimize sectoring scheme

 optimize triplet-finding in SeedTrackFinder/FastCheck, using common ATLAS/CMS algorithms

 improve track seed extension/confirmation/re-fitting in ConfirmerExtender, probably with Kalman
filtering techniques

 fix/eliminate slow helix-plane intersection finding, identified by Maurik

2. Replace existing framework with cellular automaton + track-following system

 optimize pair-finding

 use hit pairs as units of the cellular automaton

 implement track-following to "jump over holes" (which cellular automaton can't do by itself)

18

