AMBIGUITY RESOLVER

MIRIAM DIAMOND
JUNE 5 2016

Definition:
Chooses between multiple tracks, only one of which is likely to be real

May impose track quality requirements

May perform “track cleaning” (i.e. discarding outlier hits)

CURRENT SITUATION IN HPS SOFTWARE

m hps-tracking > src/main/java P> org.hps.recon.tracking »
Merge TrackCollections driver runs after GBL

" Performs only most basic ambiguity resolving tasks: removal of
duplicate and partial tracks
= Duplicates: were formed using different strategies
= “Partial”: entire track is an exact subset of a longer track in the collection

= Further ambiguity resolving tasks performed ad hoc by individual
analyses

AMBIGUITY RESOLVER ABSTRACT CLASS

List<Track> tracks:;
List<Track> partials;
List<Track> duplicates;
List<Track> shared;
List<Track> wereCleaned;
List<Track> poorScore;

Internal state lists

protected Map<List<TrackerHit>, List«Track>> hitsToTracksMap:
protected Map<Track, List<Track>> sharedTracksMap:;
protected Map<Track, double[]> trackScoreMap:;

protected AmbiguityResolverUtils utils = new AmbiguityResolverUtils():

= public get methods for internal state lists

= public void resetResolver()

= public void resolve()

= public double scoreTrack(Track track)

= protected int[] holesoOnTrack(Track trk)

= protected boolean areShared(Track trkl, Track trk2)

hps-tracking »
src/main/java P
org.hps.recon.tracking »
AmbiguityResolver.java

Various ambiguity resolvers
can inherit from this class

Can be called by
MergeTrackCollections

SIMPLE AMBIGUITY RESOLVER

hps-tracking » src/main/java P org.hps.recon.tracking P SimpleAmbiguityResolver.java

= Can be configured to replicate behaviour of old MergeTrackCollections
" Has a few more features as well

= Modes:
= Remove duplicates

= Remove partials

= For tracks with too many shared hits (adjustable threshold), keep only the best-scoring track

= Remove any tracks with poor score (adjustable threshold)

= Score = y?/dof

CLASSIC AMBIGUITY RESOLVER

hps-tracking » src/main/java P> org.hps.recon.tracking » ClassicAmbiguityResolver.java
= Simplified version of ATLAS Ambiguity Processor

= Remove duplicates, then score all tracks

" Loop through tracks, starting with highest-scoring tracks. For each track, remove all lower-
scoring tracks that share too many hits (adjustable threshold) with it

= Scoring system:
" (adjustable by layer) points for each unshared hit
= (adjustable by layer) points for each shared hit
= (adjustable by layer) penalty for each hole
" (adjustable by layer) penalty for going outside layer acceptance
= define cumProb = ChisqProb.gammp(track.getNDF(), track.getChi2())
= if better than (adjustable) threshold, add (adjustable factor) x | log,,(cumProb) | to score

= otherwise, subtract (adjustable) penalty from score

CLASSIC AMBIGUITY RESOLVER

= Scoring system requires determination of holes and missed-acceptances,
taking into account bad channels

= Facilitated by new AcceptanceHelper class in hps-tracking »
src/main/java P> org.hps.recon.tracking

public AcceptanceHelper() {

StereoclLayersMapTop = new HashMap<Integer, List<SvtStereolLayer>>():
StereolLayersMapBottom = new HashMap<Integer, List<5SvtStereolLayer>>():
StripPositionsMap = new HashMap<5iSensor, Map<Integer, Hep3Vector>>():
trackerHitUtils = new TrackerHitUtils () :

}

= protected boolean iswithinAcceptance(Track trk, int Tlayer)

= public int findIntersectingChannel (Hep3Vvector trackPosition, SiSensor sensor)

POSSIBILITIES FOR MORE AMBIGUITY RESOLVERS

® Classic + Track-cleaning

= Requires outlier detection

= May include hit recovery (for holes)
= Classic + Cluster-sharing probability

= Takes into account probability that a given cluster is shared, based on cluster properties
= Classic + Hit timing

= Includes hit timing in % in scoring
= Simulated Annealing

= Designed for “left/right” ambiguity resolution between tracks that share many hits
= Elastic Neural Net

= Probably overkill

TESTING SIMPLE AMBIGUITY RESOLVER

= Made new version of MergeTrackCollections with SimpleAmbiguityResolver

public class MergeTrackCollections extends Driver {

private AmbiguityResolver ambi;

public wvoid process (EventHeader event) {

ambi = new SimpleAmbiguityResolver():

ambi.resetResolver () :
ambi.initializeFromCollection(trackCollections) :
((SimpleAmbiguityResolver) (ambl)) .setMode (AmbiMode.DUPS) ;
ambi.resolve () :

((SimpleAmbiguityResolver) (ambi)).setMode (AmbiMode.PARTIALS) ;
ambi.resolve () :

List<Track> deduplicatedTracks = ambi.getTracks|():

List<Track> partialTracks = ambi.getSharedTracks|():

m Created hps-tracking P> src/test/java P org.hps.recon.tracking » MergeTrackCollectionsTest
to perform raw — reconstructed Icio with old vs new MergeTrackCollections

= Examined reco Icio’s using DQM : plots look the same ©

TESTING CLASSIC AMBIGUITY RESOLVER:

ACCEPTANCE HELPER

m hps-users P> src/main/java P org.hps.users.mdiamond » HoleCreationDriver

" From each track in reco Icio file:
I. Removes hits (makes holes) on track according to pre-set pattern, or at random

2. Makes new TrackerHitCollection, Raw TrackerHitCollection, Helical TrackHitCollection,
and RotatedHelicalTrackHitCollection that exclude those hits

= Qutputs to new reco Icio file

= ClassicAmbiguityResolver’s holesOnTrack, using AcceptanceHelper, correctly
identified holes in tracks in new Icio ©

TESTING CLASSIC AMBIGUITY RESOLVER:

MC SAMPLE OF 700 A* EVENTS

Sezgﬁoreiﬁresﬁoigg}?m; sharedHitScore = { 10, 10, 10, 10, 10, 10 }:
setoharelnresno ’ unsharedHitScore = { 20, 20, 20, 20, 20, 20 }:

setCumProbThreshold (0.95) ;
setChi2Scoring (2.0) ; holePenalty = { 10, 10, 10, 10, 10, 10 }:

setBadChi2Penalty (30); outsideAcceptancePenalty = { 5, 0, 0, 0, 0, 0 };

Tracks/event
After resolving

Tracks/event
Before resolving

TESTING CLASSIC AMBIGUITY RESOLVER:

MC SAMPLE OF 700 A’ EVENTS

80T Track scores o5 T Track scores
" Before resolving “1 After resolving
i (1114 tracks) 1 (1045 tracks)

TESTING CLASSIC AMBIGUITY RESOLVER:

MC SAMPLE OF 700 A’ EVENTS

Shared hits/track Hits/track Hits/track
Before resolving Before resolving After resolving
(1114 tracks) (1114 tracks) (1045 tracks)

BE0T

6401
6207
600

540
520

440
420
400+
380

340
30T
300+

2407

220
2007
180

120
100
80T

TESTING CLASSIC AMBIGUITY RESOLVER:

MC SAMPLE OF 900 TRITRIG EVENTS

Sezgﬁoregaresaﬂigéai?m; sharedHitScore = { 10, 10, 10, 10, 10, 10 }:
setoharelnresno ’ unsharedHitScore = { 20, 20, 20, 20, 20, 20 }:

setCumProbThreshold (0.95) ;
setChi2Scoring (2.0) ; holePenalty = { 10, 10, 10, 10, 10, 10 }:

setBadChi2Penalty (30) ; outsideBAcceptancePenalty = { 5, 0, 0, 0, 0, 0 };

Tracks/event
After resolving

Tracks/event
Before resolving

TESTING CLASSIC AMBIGUITY RESOLVER:

MC SAMPLE OF 900 TRITRIG EVENTS

170 170
165 1651
160 T 160T
121 Track scores 185 Track scores

1 o 150T
sy Before resolving e After resolving
T (1554 tracks) S| (1520 tracks)
1251 125
120 120+
M"M&sT1T 115+
10T 110+
1061 | M 105+
1001 1004+

951 a5+

a0T ag+

851 a5+

801 a0+

5T 75+

70T 704

65T g5+

B0

55 oo

50T+ T

45+ 07T

40t 45T

3T 40T

an+ BT

25+ 30

201 254

o Wrdhm h i

A4 10

3“” !_| = ﬂ T T T 5 T 5T

-10 0 10 20 30 40 a0 60 0~>——|—'—
-10 0 10 20

TESTING CLASSIC AMBIGUITY RESOLVER:

MC SAMPLE OF 900 TRITRIG EVENTS

1,600
] Shared hits/track Hits/track Hits/track
1,450 Before resolving Before resolving After resolving
1,400
1,350 (1554 tracks) (1114 tracks) (1520 tracks)
1,300 is00— - L 4E0T
o ol
o | 0
1,100 1,250
1,060 1:200__ 12001+
1,000 1150+ 1150
o] i
250+ 1,000 1,000
00 9501 T
750 a0
700 o0+
G507 750
G000 T00T
550 T
A007
450
00 ol
3507
300 +
2507 1
2007 222 20
160 el ol
100 Il 12;
a0 I 50 50
0 i 0

T T T T T U T | .
0.0 0.5 1.0 1.5 20 25 30 35 4.0 0 40 45 50 55 60 65 400 425 450 475 500 525 550 575 6.00 |5

IDEAS FOR STUDIES & TESTING ?

= Events that share all but one or two hits
= Generate from scratch, using particle gun with two very-nearby particles
= Artificially high-multiplicity events
" How to generate!
= Optimizing parameters in track-scoring
" How?! Data-driven or MC-driven?
= High-statistics runs
= On what!

TRACK CANDIDATE IDENTIFICATION:
PRIORITIES FOR IMPROVEMENT

JUNE 5 2016

| THINK WE HAVE TWO OPTIONS ...

|. Improve the existing framework
= optimize sectoring scheme
= optimize triplet-finding in SeedTrackFinder/FastCheck, using common ATLAS/CMS algorithms

= improve track seed extension/confirmation/re-fitting in ConfirmerExtender, probably with Kalman
filtering techniques

= fix/eliminate slow helix-plane intersection finding, identified by Maurik

2. Replace existing framework with cellular automaton + track-following system
= optimize pair-finding
= use hit pairs as units of the cellular automaton

= implement track-following to "jump over holes" (which cellular automaton can't do by itself)

