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Outline 

>  What this lecture is not 
§  a math and statistics class, a programming course 

>  What this lecture tries to be 
§  an “experimental astroparticle physicists approach to data” 

>  PART 1 (~15 minutes) 
§  Data Science: the bigger picture, or, what we are all facing sooner or later  

§  Machine learning: The basic basics 

>  PART 2 (~35 minutes) 
§  Multivariate analysis (MVA) techniques: decision trees, neural networks, deep learning 

§  Real-life examples: Boosted Decision Trees in γ-ray astronomy 

>  If anything is unclear just ask 
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Literature and Sources 

>  Many of the slides are inspired by these books and lecture notes 
§  Think Stats: Exploratory Data Analysis in Python, A.B. Downey, Green Tea Press, 2014 

§  The Elements of Statistical Learning: Data Mining, Interference, and Prediction, Hasti, 
Tibshirani, Friedman, 2009, Springer Series in Statistics 

§  Data Science from Scratch: Joel Grus, O’Reilly, 2015 

§  Practical Statistics for Astronomers, Jasper Wall (http://www.astro.ubc.ca/people/jvw/ASTROSTATS/) 

§  other references given throughout the presentation and at the end 



Data Science and the basics 
about Machine Learning 

DATA EXPLOSION 
§  in science 

§  in industry 

§  in every-day life 
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Big Data & Data Science 

>  According to Wikipedia 
§  “Data Science is an interdisciplinary 

field about processes and systems to 
extract knowledge or insights from 
large volumes of data in various 
forms, either structured or 
unstructured, which is a continuation 
of some of the data analysis fields 
such as data mining and predictive 
analytics, as well as knowledge 
discovery in databases” 

 

>  Venn Diagram 
§  Physicists and astronomers are the 

definition of Data Scientists 

§  Fulfill all requirements and are 
developers of widely applicable code 

§  Beware of the Danger Zone! 
Source: http://pmone.com 
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How does machine learning fit in? 

>  Data Science covers techniques from different fields 
§  signal processing, probability models, machine learning, statistical learning, data 

mining, database, data engineering, pattern recognition and learning, visualization, 
predictive analytics, uncertainty modeling, […], high performance computing 

>  Difficult to talk about machine learning without talking about data 

>  A few examples 
§  Facebook uses hometown and current location to identify global migration patterns 

§  Target tracks purchases and interactions to predict which of its customers is pregnant 

§  2012 US election – Obama employed hundreds of data scientists to identify potential 
voters 

>  Data Science for social good (http://dssg.uchicago.edu) 
§  Improve government 

§  Help homeless people 

§  Improve health care 
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Data analysis 

>  Data retrieval 
§  from experiments 

§  generate your own data 

§  from internet or an Application Programming Interface (API) 

>  Data preparation 
§  calibrate raw data 

§  remove outliers or noise 

>  Data pre-processing 
§  Identify parameters with valuable information in calibrated 

data (signal/background classification, pattern recognition) 

§  First-level selection cuts and data reduction (“outliers”) 

>  Data Mining (Machine Learning with multivariate 
analysis techniques) 

➝ What are the tools to do that? 

W
or

k 
Fl

ow
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The toolkits 

>  ROOT 
§  Mostly used in particle physics 

§  Adapted in astronomy and astroparticle physics 

§  C++, object-oriented 

§  Higgs-discovery plots produced with ROOT 

>  IDL, MATLAB, R, ds9, … 
§  many statistics features and numerical methods 

§  standard in different fields for many years, now being 
replaced by python 

>  Python 
§  the new standard in industry and science 
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ROOT vs. python 

 
§  provides more functionality 

than ROOT 

§  vastly more external 
developers 

§  shared by many communities 
(scientific and non-scientific) 

§  better/cleaner design 

§  quicker and easier to get 
things done 

§  more lightweight 

http://www.maitravelsite.com 
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Data retrieval 

>  Open access is the way to go 
§  Astronomical observatories after proprietary time 

§  Provided via webpages and online archives 

§  Mostly in FITS format 

§  Particle physics community is joining 

§  Often via Virtual Machines 
•  (Almost) no fiddling around with software versions, 

installations, external packages, etc. 
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Data retrieval 

>  Generate your own data 
§  very useful in many circumstances 

§  using random number generators 

§  large-scale Monte Carlo simulations 

>  Monte Carlo simulations 
§  most of you know those 

§  for optimization, instrument characterization, … 

§  drawing from probability distributions 

>  Application Programming Interfaces 
§  Many webpages provide APIs 

§  Interface to receive data in structured format (XML, 
JSON) 

§  Examples: Amazon, Ebay, Facebook, Geopy, 
Google Maps, Last.fm, Rotten Tomatoes, Twitter 

Generate function 

Fake data 

Fit fake data 

Draw everything 
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Data preparation 

>  The data you want to analyze is calibrated 
§  Congratulations, someone has done the job for you 

§  Don’t forget to check also calibrated data 

>  The data you want to analyze is not calibrated 
§  Lets roll up the sleeves and calibrate the data 

§  Illustration of how important calibration (and simulations) are (ATLAS EM calorimeter) 

ATLAS Collaboration, Eur. Phys. J. C., (2014), 74: 3071 
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Data pre-processing 

>  Identify outliers during data preparation 

>  Outliers 
1.  Occur during data collection, i.e. human errors 

2.  Malicious act (e.g. in questionnaires) 

3.  Noise in data (temporal, spatial, etc.) 

4.  Incorrect assumptions when looking at data or building model 

>  Importance 
§  1 & 2 very important in social sciences, medical studies 

§  3 & 4 very important in fields where data is collected with ‘instruments’ (e.g. physics, 
astronomy, geo-sciences) 

>  If kept 
§  1 & 2 may influence statistical analyses and outcome of statistical test (e.g. correlations) 

§  3 & 4 can fake signal, wrong understanding of background 



Stefan Ohm  |  Fermi Summer School  |  03.06.2017  |  Page 15 

Where are we now? 

>  We retrieved some data 
§  from an instrument or from elsewhere 

>  We calibrated the data 
§  or got calibrated data 

>  We inspected the data 
§  identified outliers and removed them, 

§  or know where they come from and include them in our model 

>  Building a model and interpreting the data 

➝ Dive a bit into Machine Learning Basics 
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Source: https://casis.llnl.gov 

Machine Learning 

>  What is Machine Learning? 
§  Wikipedia: “…is a subfield of computer science, evolved from the study of pattern 

recognition and computational learning theory in artificial intelligence. Machine 
Learning explores the study and construction of algorithms that can learn from and 
make predictions on data. Such algorithms operate by building a model from example 
inputs in order to make data-driven predictions or decisions, rather than following 
strictly static program instructions.” 

>  Algorithms are the tools that perform the learning 

>  Algorithms are building the model, not the user 

>  Learn from, and make predictions on data 

>  The better the input data, the better the prediction 

➝ What are these algorithms? 



Stefan Ohm  |  Fermi Summer School  |  03.06.2017  |  Page 17 

Machine Learning Categories 

>  Categorize, based on nature of the learning “signal” or “feedback” 
available to the system 

>  Supervised learning 
§  algorithm is provided with example input and class labels (the desired output) 

§  algorithm tries to find a rule that maps inputs to outputs 

>  Unsupervised learning 
§  algorithm is provided with example input data and no class labels 

§  algorithm has to find structure in input 

§  E.g. discover hidden patterns in data, search for correlations 

§  Learn at a specific task (find features) and learn the features themselves 

>  Reinforcement learning 
§  Constant interaction of algorithm with dynamical environment to perform goal (e.g. drive 

car, don’t crash it).  

§  Learn the rules of a game by playing it (goal: win game) 
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Machine Learning Categories 

>  Categorize, based on the desired output 

>  Classification 
§  inputs are divided in two or more classes; produce model to map input to classes 

§  Examples: spam filtering, signal/background classification, particle type 

>  Regression 
§  the output is continuous rather than discrete as for classification 

§  Example: What is the energy of an event with properties x,y,z 

>  Clustering 
§  input data is to be divided into groups, which are not known beforehand 

§  Where do sports-team supporters live and what is their typical age? 

>  Density estimation 
§  finds the distributions of inputs 

>  Dimensionality reduction 
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Other types of tasks and problems 

>  Learning to learn 
§  learns its own inductive bias based on past experience (frequent change of properties 

necessary to map input to output) 

>  Developmental learning 
§  takes it one step further and generates own sequences of learning situations to 

acquire skill set 

§  employing active learning, maturation, motor synergies, and imitation 

§  that does sound like robots and AI, doesn’t it? 

>  Relation to other fields 
§  ML focuses on predicting, based on known properties – data mining focuses on 

discovering, based on unknown properties 

§  ML and Statistics are closely related fields, now also with interdisciplinary 
approaches (Statistical Learning) 

§  Statistics and ML now more or less combined in Data Science 



Stefan Ohm  |  Fermi Summer School  |  03.06.2017  |  Page 20 

PART 1 

>  Summary 
§  Data explosion in the coming years 

§  Data is the bread and butter for physicists/scientists, but they also bring the skill set to 
do data science 

§  Data needs to be retrieved, prepared and cleaned before usage 

§  Data needs to be parameterized (e.g. PDFs) for generalization 

§  Plenty of toolkits available to do analysis – some with more focus on statistical 
methods than others 

§  Machine Learning algorithms build model, learn from data & make predictions on data 

§  Different classes of algorithms are used for different tasks (e.g. supervised vs. 
unsupervised learning) 

➝ PART 2: Discuss different ML algorithms 



Machine Learning Algorithms 

PART 2 
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Outlook 

1.  Toolkits 

2.  Decision Trees 

 

3.  Artificial Neural Networks 

4.  Deep Learning 



Toolkits 

PART 2.1 
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Toolkits 

>  ML algorithms 
§  widely used in many programming languages 

§  Fortran, C, C++, .NET, JAVA, python 

>  Nowadays, community is 
§  moving towards toolkits 

§  growing larger and larger 

§  moving from science-driven to science/industry-driven development 

>  Here, introduce two packages 
§  TMVA 

§  scikit-learn 

Source: (1) 
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TMVA 

>  TMVA: Toolkit for Multivariate Data Analysis 
§  built upon ROOT 

§  provides framework for supervised learning techniques 

§  provides processing, parallel evaluation and application of multivariate classification 
and regression methods, model selection and evaluation 

>  Methods 
§  Rectangular cut optimization 

§  Projective and multi-dimensional likelihood estimation 

§  Linear and non-linear discriminant analysis 

§  Neural Networks 

§  Decision Trees 

§  Support Vector Machines, etc. 

>  Usage 
§  driven by the needs for high-energy physics applications 

§  also applied in γ-ray astronomy (see later) 

Source: (2) 
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scikit-learn 

>  Machine Learning in python 
§  built upon python (fast, clean, robust, comprehensive 

and easy-to-use) 

§  provides supervised, semi-supervised, unsupervised 
techniques,  

§  additionally: dataset loading and transformations, model 
selection and evaluation, scaling to bigger data 

>  Methods 
§  all of the TMVA methods, plus 

§  Clustering 

§  Decomposing signals in components 

§  Density estimation 

§  Unsupervised Neural Networks 

§  Dimensionality reduction and pre-processing 

>  Usage 
§  widely used in science and industry (Evernote, Spotify) 

Source: (3) 



Decision Trees 

PART 2.2 
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Decision Trees 

>  Concept 
§  a decision tree is a predictive modeling tool 

§  uses a tree structure to represent a number of possible decision paths 

§  classification trees predict class 

§  regression trees predict continuous (real) number 

§  decision trees map a n-dimensional input to a 1-dimensional output 
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Decision Trees 

>  A general description 
Consider inputs X1 and X2 mapped onto Y 

a)  Feature space can be modeled by constants, but in different regions 
of parameter space 

b)  Described by a binary decision tree with cuts on input parameters at 
nodes 

c)  Terminal nodes declare class labels 

➝ Decision Trees split parameter space into rectangles and fit a simple 
model in each one (e.g. a constant) 

Node (tests attributes) 

Leaf (terminal value or 
class label) 

Branch (attribute value) 

Root (input data) 

Source: (4) 
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Source: (5) 

Decision Trees 

>  Learning 
§  using representative training data 

§  identify variables/parameters with classification potential 

1.  Split the source set (consisting of all classes) into subsets based on an attribute 
value test (binary decision or cut on continuous variable) 

2.  Repeat process on subsets ➝ grow decision tree 

3.  Stop at a certain point (purity in leaves) 

>  User input 
§  Training set consisting of events of known classes 

§  List of variables with classification potential 

>  Decision Tree output 
§  Each leaf returns signal/background (classification mode) 

§  Each leaf returns a specific value of the target variable 
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Decision Tree Learning 

>  Advantages 
§  simple to understand and interpret 

§  almost no data preparation 

§  able to handle both, numerical and categorical data  

§  ‘white box’, completely transparent 

§  robust, even if the assumptions for the model do not perfectly describe the real data 

§  performs well with large data sets 

§  can classify data for which attributes are missing 

>  Limitations 
§  decision trees learn to locally optimize 

§  Overfitting and over-complex trees do not generalize well from training data 

§  Some concepts are hard to learn by trees (e.g. parity, odd/even number classification) 
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Decision Tree: Ensemble Methods 

>  Single decision trees tend to overfit 
§  i.e. instable to statistical fluctuations in the training sample 

➝ classifier response is altered compared to real data 

➝ lower performance in classification problems 

>  Ways out 
§  train a forest of decision trees 

§  classify events based on a majority vote of many trees 

§  since same input training sample is used, we have to come up with different tree 
structures 

➝ Boosting (Boosted Decision Trees) 
•  re-weighting of misclassified events, when building the next decision tree 

➝ Randomization (Random Forests) 
•  randomly choose subset of events or classifying parameters for training of single tree 

➝ Pruning 
•  grow trees to maximum extent, cut back insignificant leaves 
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Example: BDTs & IACTs 

>  Improve sensitivity of IACTs in the analysis 
§  improve reconstruction of showers 

§  two possibilities: 
•  classification of events using multivariate analysis techniques (MVAs; e.g. neural networks, boosted 

decision trees) 
•  use information in all pixels to do reconstruction (full-blown, CPU-intense likelihood fitting) 

>   Why cuts on scaled parameters are not sufficient 
§  Cuts on shower shape (Width/Length) are box cuts  

§  other parameters have separation potential as well (such as height of maximum 
Cherenkov light emission) 

§  box cuts ignore correlations 

➝ MVAs can take care of this 
Colour = CRs 
Contours = γ rays 
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BDTs for γ/hadron classification 

>  BDT settings 
§  200 trees trained (compromise between performance and processing) 

§  Gini index used to split at nodes, similar performance achieved with other techniques 

§  Stop splitting at (N1 + N2) / (10 * N2
par) ➝ taking into account the training statistics and 

number of training parameters 

§  Number of steps when scanning input parameters for best cut set to 100 

§  Input parameters (everything with classification potential) 
•  MRSW, MRSL, MRSWO, MRSLO, σE/E, Xmax 

•  Output is (cut) parameter that measures hadroness or γ-ray likeliness 

Source: (5) 
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Some more details 

>  Training sample 
§  classification should work for full dynamic range of instrument (energy, zenith angle) 

§  if distribution of input parameters for signal and background change as a function of 
observation condition, the BDT response will change as well 

§  Train in energy and zenith angle bands 

§  Training statistics between 120k/240k events and 15k/25k events for γ/hadrons 

§  Cut on BDT output alone not a good idea (would result in a signal efficiency that 
changes with observation conditions) ➝ cut on signal efficiency instead 

§  Note the range of BDT output distributions 

Source: (5) Training statistics 

Cut parameters for (εγ = 0.84/0.83) 
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BDTs in H.E.S.S. 

>  Results 
§  BDTs are a robust, simple and sensitive analysis method (better than others) 

§  Training in energy and zenith angle bands can take out parameter dependencies  

§  Classifier response changes as a function of energy/zenith 

§  Parameter importance changes as a function of energy/zenith 
•  Xmax at low energies 
•  MRSW at medium energies 
•  all parameters at high energies 

Source: (5) 
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BDTs in H.E.S.S. 

>  Tests on real data 
§  BDTs are much more sensitive than box cuts performed on individual parameters 

§  for HESS and Hillas-based parameters, 45% less observation time for one cut set 

§  Performance improvement across all energies 

§  Very good agreement between Monte-Carlo simulations and real data 

Source: (5) 

Source: (5) 

Source: (5) 

>  Lessons learnt 
§  Test different classifiers and settings other 

than default 

§  Deep trees are good for complex problems 

§  Easy to extend to more input parameters 
(Becherini et al. 2011, Naumann-Godo et al. 
2009) 
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Major Achievement 

>  Hint of signal seen from NGC 253 after 50 hours of data taking with 
BDT analysis triggered deep observations 

➝ First detection of a Starburst Galaxy in TeV γ rays (Science, 2009) 

NASA/JPL-Caltech/WISE Team 



Artificial Neural Networks 

PART 2.3 
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Neural Networks (NNs) 

>  Concept 
§  Inspired by humans’ brain 

§  Is simulated collection of inter-
connected “neurons” 

§  Each neuron returns certain response 
to set of input signals 

§ Neural net is put into defined state by 
applying external input signals that 
can be measured by the response of 
one (or multiple) output neurons 

§ Connections have numeric weights 
that determine importance of inputs 

Source: (15) 
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Working Principle 

>  Artificial NNs 
§  ANN is a mapping of n-dimensional input 

parameter space x1, …, xn to m-dimensional 
output parameter space y1,…ym 

§  m = 1 is classical signal/background problem 

§  mapping linear if all neurons have linear 
response; non-linear if response of one neuron 
is non-linear 

§  behavior is determined by 
•  layout of neurons 
•  weights of inter-neuron connections, w 
•  and the neuron response function (activation 

function) 

§  Regression layout similar, but with one output 
neuron per target Source: (18) 

MLP 
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Neuron response function 

>  Mathematical description 
§  neuron response function ρ maps i1, …, in onto neuron output 

§  can often be separated into a synapse function κ and a neuron activation function α 

§  In e.g. TMVA, the functions are implemented as  

Source: (18) 
Single Neuron 
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Feed-forward Networks and Learning 

>  Characteristics 
§  ANNs are organized in layers: input, output and hidden layers 

§  Each neuron in one layer is connected to all neurons in next layer ➝ feed forward 

§  No connection among neurons in same layer 

>  Multiple hidden layers possible 

>  Back-propagation and learning 
§  Provide N training events of known type 

§  Define set of input parameters 

§  Let ANN classify event 

§  Compare with expectation 

§  Adjust weights, repeat until minimum is reached 

§  Adjust weights by means of an error function (compare output with expectation) 

§  change weights via gradient decent (differentiate functions) 

© Niels Hartvig 

Cat eating mouse 
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Practical training issues 

>  Generally 
§  problem is overparametrized 

§  optimisation is unstable 

§  issues may appear depending on the non-linear function type used 

§  Overfitting is an issue (add weight decay or weight elimination (i.e. 
adding penalty to the error function) 

>  Network architecture 
§  influences the performance a lot 

§  too many hidden layers is better than not enough 

§  less hidden layers means worse response to non-linearities in data 

§  Multiple layers allow for construction of hierarchy and search for 
different levels of detail (resolution) in data 

Source: (19) 
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Preliminary Summary 

>  NNs attracted a lot of attention, but 
§  tend to overfit (there are ways out of it) 

§  are computationally expensive ➝ NNs with one hidden layer 

§  are black boxes 

§  most applications could be realized with other, more transparent methods, achieving 
the same performance 

§  good in cases where prediction without interpretation is required 

§  less so if model interpretation is needed, or where physical quantities of inputs and 
their inter-relation is required 

>  Mid 2000’s 
§  Feature extraction in big data 

§  renewed interest in neural networks, especially in the context of deep learning 

§  industry entered the game 
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Deep Learning 

>  Is the new kid on the block 

>  Most popular approach to tackle artificial intelligence (AI) problems  

>  Used to describe the world (i.e. data) with networks of hierarchical non-
linear functions (i.e. NNs or NNs combined with other classifiers) 

>  Used by biggest (i.e. data-intense) internet companies in the world 

 

>  Very successful in performing specific tasks 
§  Social media (e.g. image recognition) 

§  Consumer electronics (smartphones, wearables) 

§  Entertainment and media (“users who bought this,…”) 

§  Medicine, Defense & Intelligence DeepTox 



Stefan Ohm  |  Fermi Summer School  |  03.06.2017  |  Page 47 

Acknowledgement 

>  We are now entering the part of the lecture, Stefan didn’t know much about two years 
ago. Hence, it is strongly influenced by recent computer science papers, blog posts, 
presentations, conference proceedings, and NVIDIA developer courses J 

§  [HS1997], Hochreiter, S., and Schmidhuber, J., “Long Short-Term Memory”, Neural Computation, 9(8), 
1735, 1997 

§  [K2012] Krizhevsky, A., Sutskever, I., and Hinton, G.E., “ImageNET Classification with Deep 
Convolutional Neural Networks”, Advances in Neural Information Processing Systems 23 (NUPS 2012), 
2012 

§  [Z2013] Zeiler, M.D., and Fergus, R., “Visualizing and understanding convolutional networks.”, CORR, 
abs/1311.2901, 2013 

§  [K2015] Andrej Karpathy blog, “The unreasonable effectiveness of recurrent neural networks”, 
21.05.2015, http://karpathy.github.io/2015/05/21/rnn-effectiveness/ 

§  [D2014] Sander Dieleman blog, “Recommending music on Spotify with deep learning”, 05.08.2014, 
http://benanne.github.io/2014/08/05/spotify-cnns.html 

§  [S2015] Schmidhuber, J., “Deep learning in neural networks: An overview”, Neural Networks, 61, (2015), 
85 – 117 

§  [M2015] Mnih, V. et al., “Human-level control through deep reinforcement learning”, Nature, 518, 529, 
2015 

§  [N2015] NVIDIA webinars/presentations on deep learning, https://developer.nvidia.com/deep-learning 

§  and Wikipedia of course 



Stefan Ohm  |  Fermi Summer School  |  03.06.2017  |  Page 48 

Convolutional Neural Network (CNN) 

>  Widely used for image and video recognition 

>  Were very popular in the 1990’s for hand-written digit classification and 
face detection 

>  Recently renewed interest thanks to 
§  much larger data sets of e.g. images that are labeled (millions) 

§  better model generalization strategies (see dropout method) 

§  powerful GPU implementations allowing for very large models to be trained 

>  Utilize 
§  Backpropagation (see before) 

§  Receptive fields 
•  multiple layers of small collections of neurons that learn about a part of an image 
•  connected to better describe the boundaries 
•  performed for every layer 

§  Rectified Linear Units (ReLU) 
•  model neuron response as f(x) = max(0,x), rather than tanh or sigmoid function 
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Convolutional Neural Network (CNN) 

>  Typical layers 

§ Convolutional layers 
•  convolves input image with set of learnable filters 
•  reproduces one feature in the output image 
•  weights are shared, i.e. same filter is used for all pixels in a receptive field 

§  Pooling layer 
•  compute max/average value of certain feature per sub-image 
➝ increase robustness to translations in images 

§ Dropout method 
•  prevents overtraining by leaving out nodes with probability 0.5 at each training step ➝ new 

network architecture every round reduces susceptibility to rely on a few significant nodes 

§  Loss layer 
•  employs different loss functions for different applications (single class, probability, real values) 
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K2012 approach 

>  Idea 
§  map 2D color input image to probability vector over different classes via series of layers 

>  Each layer consists of 
1.  Convolution of previous layer output with set of learned filters 

2.  Passing response through ReLU functions 

3.  optionally max-pooling over neighbouring kernels 

4.  optionally renormalization through contrast operation 

Figure 2 of K2012 
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Visualizing the K2012 network architecture (Z2013) 

>  In general hard to interpret or even to understand why certain layouts perform well 

>  Hence also hard to guide for future improvements 

>  Z2013 developed visualization technique that 
§  is based on a multi-layered deconvolution network (Zeiler et al. 2011) 

§  features are far from random or un-interpretable 

§  reveal intuitive properties such as compositionality 

§  minimum depth of network is vital to performance 

Figure 2 of Z2013 
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Recurrent Neural Network (RNN) 

>  Properties 
§  have feedback connections that can ‘remember’ information about previous training events 

§  put NN into internal state, allowing for dynamic behavior 

>  Application 
§  handwriting/speech recognition 

§  learning syntax from any input (latex, code, wikipedia) 

>  Back-propagation through time (BPTT) 
§  error signals ‘flow back in time’, by connecting units to previous layers 

>  Reinforcement learning 
§  inspired by behavioral psychology: NN interacts with environment through observation ➝ 

action ➝ reward 

§  use fitness or reward function, where the goal of the NN is to maximize future reward 

[HS1997] 
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>  How is it learning 
§  Use Leo Tolstoys “War and Peace” as training input, sample every x training cycles 

§  100 cycles: jibberish, but note words separated by spaces 

 
§  300 cycles: learns periods at end are followed by spaces 

 
§  500 cycles: shortest and most common words 

§  700 cycles: more and longer words appearing 

§  2000 cycles: quotations, questions, exclamation marks, names, words 

Applications (K2015)  
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Learning NNs to play ATARI 2600 games (M2015) 

>  Layout 
§  combines reinforcement learning (LSTMs) 

with convolutional NNs 

§  84 x 84 x 4 image followed by 3 
convolutional layers, and 2 fully connected 
layers 

§  output is action with joystick 

§  hidden layers are followed by ReLUs 

>  Training 
§  each game is one set of trained NN 

§  via a reward function 

§  agent selects from set of allowed actions, 
changing internal state ➝ modifying the 
emulator ➝ reward 

➝ NN learns based on sequences of actions 
and observations 
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Learning NNs to play ATARI 2600 games (M2015) 

>  High reward scenes 
§  completing a screen 

leads to a new screen 

>  Medium reward 
scenes 

§  in the middle of a 
level, where rewards 
are less imminent 

§  orange bunkers not 
that significant 
towards end of level 

Expected  
Reward 

Visualizing game states of last hidden layer 

Space Invaders 
© Square Enix Limited 
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How come there is so much fuzz about that now? (N2015) 

>  Answer is simple 
§  Big Data to learn deep neural networks 

§  New deep learning techniques, and (most importantly) 

§  computing power via CPUs and GPUs 

>  Why GPUs 
§  Neural Networks explore functions, matrices, vector operations, connections 

§  Requires many cores to perform calculations (cloud-like CPU computing infrastructure)  

§  GPUs are designed for these kind of operations (e.g. “Deep learning with COTS HPC systems”, 
Coates, et al. ICML 2013) 

§  GPUs make deep learning accessible when organized in servers with interconnections 

1000 CPU servers 
2000 CPUs 
16,000 cores 
 
600kWatts, $5M 

3 GPU-acc. servers 
12 GPUs 
18,432 cores 
 
4kWatts, $33k 

Google datacenter That’s the game changerStanford AI labs 
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Summary and outlook 

>  Big Data 
§  we are drowning in data, but 

§  we have tools to crawl data for relevant information 

>  Machine Learning 
§  is the way to go 

§  just have to be smart about the methods and decide what tools to use when/how 

>  Deep Neural Networks 
§  are widely used in industry and increasingly in science 

§  if things are industry standard, good to think about how to use them in science 

§  GPUs have revolutionized the field 

§  So far we are still computing limited (signal transmission time) 
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Summary and outlook 

>  Big Data 
§  we are drowning in data, but 

§  we have tools to crawl data for relevant information 

>  Machine Learning 
§  is the way to go 

§  we just have to be smart about the methods and decide what tools to use when/how 

>  Deep Neural Networks 
§  are widely used in industry and increasingly in science 

§  if things are industry standard, you better think about how you can make use in 
science 

§  GPU acceleration has revolutionized the field 

§  So far we are still computing limited (signal transmission time) 

§  In this context, think about this… 

Source: (23) 
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Decision Tree Learning 

>  Adaptive Boost 
§  is particularly powerful on weak classifiers, like decision trees with small depth (i.e. 

layers of decision nodes) 

§  solves problem of overtraining 

§  “slow learning” can further improve the performance and is regulated by an exponent to 
the boosting weight: 

>  Boosting for regression trees 
§  Technique needs to be modified 

§  Redefined ‘loss-per-event’ definition that considers how far off the derived value is from 
the target value 

§  all events need to be reweighted, according to Linear, Square or Exponential function 


