

Compton telescopes: Design considerations, etc

J. Eric Grove U.S. Naval Research Laboratory

first ²⁶Al all-sky map

Why observe near 1 MeV?

Grove

Why observe near 1 MeV?

Future MeV Telescope Highlights and Discoveries Gamma-ray Space Telescope GRBs langua e lie Extragalactic e*e **Blazars** spectrum **Radio Galaxies Starburst Galaxies** LMC & SMC **Globular Clusters Fermi Bubbles SNRs & PWN** Nova **y-ray Binaries** Pulsars: isolated, binaries, & MSPs Sun: flares & CR interactions **Terrestrial γ-ray Flashes**

2

Dark Matter

Space'

Why observe near 1 MeV?

Future MeV Telescope Highlights and Discoveries

Supernovae Type Ia and MeV astronomy

• SN Ia have been crucial in understanding the structure of the universe

Perlmutter 1999 Physics Today

Grove - MeV Astronomy

Warren et al. 2005

Supernova Type Ia cosmology

Conley et al. 2011

... yet we do not understand the nearby SN Ia well

Type la supernova scenario

 Nuclear ignition in a White Dwarf (WD), with a large fraction of the mass burned to nuclear statistical equilibrium, centered around ⁵⁶Ni. The entire star is disrupted in the explosion.

Explains:

- Hydrogen deficiency
- Late-time Fe-group emission
- High velocities, ~10⁴ km/s
- Presence in elliptical galaxies

Outstanding Issues:

- Nature of progenitor systems, composition & mass of WD
- Ignition location(s)/conditions
- Nuclear flame propagation
- Effect of rotation, **B** on explosion
- Nature of observed luminosity/duration correlations, and impact of metallicity (Timmes et al. 2003, Jackson et al. 2010)

⁵⁶Ni is key to understanding these explosions....

${}^{56}N$	$i \stackrel{\text{\tiny 6d}}{\longrightarrow} 5$	^{6}Co	$\xrightarrow{77 \text{ d}} 56$	Fe
	158 keV 812 keV etc.		847 keV 1238 keV etc.	

Grove - MeV Astronomy

13

Why hasn't this been done already?

Rich science at ~1 MeV is hampered, so far, by poor sensitivity

Differential continuum sensitivities of X-ray and γ -ray instruments for isolated point sources Takahashi et al. 2013

• Narrow and broad line sensitivity needed for nuclear astrophysics

- Compare current/historical mission sensitivities to theoretical predictions
 - COMPTEL and Integral/SPI: ~ few x 10^{-5} ph cm⁻² s⁻¹ in 10^{6} sec
 - Want < few x 10^{-7} ph cm⁻² s⁻¹ in 10^{6} sec
- Goal
 - Time dependence and many sources

SCIENCE DIVISION OF THE SCIENCE DIVESTICAL SCIENCE DIV

Interaction with matter

• Scattering angle and photon energy loss are directly related

Interaction with matter

- Detector materials are most transparent in the MeV band!
 - Need thick detectors
 - Astrophysical sources are dim, so need large area detectors
 - Large area, thick detectors are massive

Interaction with matter

- Detector materials are most transparent in the MeV band!
 - Need thick detectors
 - Astrophysical sources are dim, so need large area detectors
 - Large area, thick detectors are massive

Least absorption Greatest transparency

Basic Compton telescope

- Two components
 - One detector to scatter the γ ray
 - Another detector to absorb the scattered γ
 - Use Compton formula to reconstruct incident photon direction
 - Need to measure position and energy deposition in both detectors

• What happens if scattered γ ray isn't fully absorbed? How would we know it's fully absorbed?

Compton telescope principles

- Compton event reconstruction
 - Incident energy = sum of measured energies E_1 , E_2
 - Incident direction from Compton formula

$$\cos\theta = 1 - m_e c^2 \left(\frac{1}{E_2} - \frac{1}{E_1 + E_2}\right)$$

- Incident direction reconstructs to cone
 - Annulus on sky
- Width of cone ("angular response measure") is function of E and position resolution
 - dE term:

$$\Delta\theta = \frac{m_{\rm e}c^2}{\sin\theta} \left[\frac{\Delta E_1^2}{(E_1 + E_2)^4} + \Delta E_2^2 \left(\frac{1}{E_2^2} - \frac{1}{(E_1 + E_2)^2} \right)^2 \right]^{1/2}$$

- Must have good dE and good dx
 - Angular resolution depends on spectral performance
 - e.g. good dE: Si, Ge, LaBr₃, SrI₂
- Must fully absorb in D2
 - Reconstructed E and direction will be wrong if energy escapes
 - (Not entirely trivial to find such a detector material; e.g. need lots of Si, Ge)

Compton telescope principles

- HAVE SCIENCE OTHER & PO
 - Compton event reconstruction
 - Width of cone ("angular response measure") is function of E and position resolution
 - dE term:

$$\Delta\theta = \frac{m_{\rm e}c^2}{\sin\theta} \Big[\frac{\Delta E_1^2}{(E_1 + E_2)^4} + \Delta E_2^2 \Big(\frac{1}{E_2^2} - \frac{1}{(E_1 + E_2)^2} \Big)^2 \Big]^{1/2}$$

- dx term:

» Separating D1 and D2 increases lever arm

- Design trade

- Separating D1 and D2
 - Improves angular resolution
 - Decreases effective area
 - » Decreases efficiency for detecting scattered γ ray

What's the right choice?

Compton telescope principles

- Compton event reconstruction
 - Width of cone ("angular response measure") is function of E and position resolution
 - dE term:

$$\Delta\theta = \frac{m_{\rm e}c^2}{\sin\theta} \left[\frac{\Delta E_1^2}{(E_1 + E_2)^4} + \Delta E_2^2 \left(\frac{1}{E_2^2} - \frac{1}{(E_1 + E_2)^2} \right)^2 \right]^{1/2}$$

- dx term:
 - » Separating D1 and D2 increases lever arm

- Design trade
 - Separating D1 and D2
 - Improves angular resolution
 - Decreases effective area
 - » Decreases efficiency for detecting scattered γ ray

What's the right choice?

12

Compton imaging

- Image
 - Each photon = ring
 - Intersection of many rings
- Issue
 - Source confusion
 - Rejection of sky background
 - Especially the bright atmosphere of Earth
 - Complicated PSF

- Mitigation
 - Best possible E and position resolution
 - Keep them well matched
 - Get more information about the scatter in D1: track the recoil electron

- The origin of a single not-tracked event can be restricted to the so called "event circle".
- The photon originated at the point of all overlap.

Electron tracking

- Measuring recoil electron track
 - Allows almost complete interaction reconstruction
 - Reduces Compton ring to an arc
 - Multiple coulomb scattering of recoil electron limits ability to measure initial recoil direction
 - Want low-density D1 to minimize MCS
 - But that minimizes Compton probability
 - But it raises low E threshold for instrument
 - Recoil electron must travel through finite detector thickness
 - e.g. range(500 keV e) < 1 mm of Si
- Note: Doppler broadening
 - Momentum of bound electron is important
 - Significant contribution below ~1 MeV
 - Whether electron tracking or not
 - Sets fundamental limit on measurement uncertainty
 - Low-Z materials make better scatterers

Monte Carlo example: cubic meter of Si

- Point source at 847 keV
 - 10⁴ shots into 1x1x1 m Si cube: ~2 days observing SNIa at 15 Mpc
 - Require 2 interactions, no electron tracking: ~8500 reconstructed γ rays

Monte Carlo example: cubic meter of Si

- Point source at 847 keV
 - 10⁴ shots into 1x1x1 m Si cube: ~2 days observing SNIa at 15 Mpc
 - Require 2 interactions, no electron tracking: ~8500 reconstructed γ rays

STATE SCIENCE DIUR

Multiple Compton scatters

- But wait... we can be more clever
 - No need for full absorption (patent: Kurfess et al. 2003)
 - If γ ray scatters at least twice (i.e. at least 3 interaction points in telescope), can measure incident energy without totally absorbing the incident photon

$$E_0 = E_1 + \frac{1}{2}E_2 + \frac{1}{2}\left[E_2^2 + \frac{4m_ec^2E_2}{1 - \cos\theta_2}\right]^{1/2}$$

- Thick, high-Z D2 absorber is not required!
 - Imagine a large array of Si detectors....
 - "Easy" to get excellent position and energy resolution

Multiple-Compton technique

Three Gamma Interaction Technique

above is
derived
from:
$$\begin{cases} \cos \Theta_2 = 1 - m_e c^2 \left(\frac{1}{E_3} - \frac{1}{E_2} \right) \\ L_2 = E_2 - E_3 \end{cases}$$

- Unknown source: 3 interactions required to determine energy, E₁
- Known source: 2 interactions required to determine energy, E₁
- Does not require total energy absorption
- Efficient Compton telescope, even if using silicon detectors
- Ordering algorithm is essential

See N1-1: Wulf et al. for prototype results

Multiple-Compton technique

• Warning: order of scatters is essential, and number of scatters can be large

October 26 2005

8

How common are multiple Comptons?

- Very, so don't throw them out
 - Maybe Si-only Compton telescope isn't optimal, but needs higher Z somewhere

asCi design considerations - material

Ge : 4 ± 2 interactions needed to transform full energy (75% of photons) Si : 8+3-2 interactions needed to transform full energy (75% of photons)

Ge : provides sufficient number of interactions (algorithms require \geq 2) while providing enough stopping power to prevent too many interactions (makes reconstruction impossible, since they increase with *n*!) and increase the chance of the full photon energy being deposited.

Si ACT (and variants)

Si ACT (and variants)

"Requirements" for high-res Compton tele

- Low Z scatterer
 - Minimizes Doppler broadening (most important below MeV)
 - Minimizes MCS of recoil electron, if tracking
- High Z absorber
 - Good stopping power to absorb scattered gamma (and minimize multi-Compton)
- High efficiency
 - Proper scatterer and absorber to give highest possible efficiency
 - Compact (as possible) to maximize geometric cross section for interaction
- Excellent energy resolution
 - Well matched with d^3x
- Fine position resolution
 - Well matched with dE
 - Thumb: ~1 mm and ~few keV are commensurate
- Low-power electronics
 - Preserve intrinsic dE, d³x of detectors while staying within power budget
- Minimal passive mass within detection volume
 - Interactions can be missed in passive material, and kill Compton performance
 - Minimize structural supports, co-located electronics
 - Minimize detector guard rings

Polarimetry

- Compton telescope is good polarimeter
 - Compton scatter preferentially in direction perpendicular to polarization vector
 - Measure intrinsic polarization of γ -ray source by measuring modulation in scatter angles in detector

Polarization response

	0 000.00		,	
F				

Crab-like source (ref: Jourdain & Roques 2009)

Energy range (MeV)	Selections	Modulation µ ₁₀₀	Source (s ⁻¹)	Atmosph. bgd (s ⁻¹)	CGB (s ⁻¹)	Cosmic-ray induced bgd (s ⁻¹)	$MDP_{3\sigma}(c)$
0.2 – 2	2+ events without e- tracking θ_{EHC} =20°, θ_{ARM} =3.5°	0.305	28.3	15.0	61.4	7.0 (a)	0.37%
3 – 10	3+ events with e- tracking θ_{EHC} =20°, θ_{ARM} =1.5°	0.124	0.13	0.36	0.10	0.37 (b)	19.2%

Modulation ratios for 2-layer instrument

High polarization ratio.
Short lever arm.
High geometric efficiency for thick detectors (strip pitch < thickness).
Data more difficult to process.

- Lower polarization ratio.
 Longer lever arm.
 Efficiency rises as ~N2.
- •Data simpler to process.

Geometry corrected polarization signature

Polarigramme for a Crab-like source on axis in the range 0.2 - 2 MeV, yielding a modulation $\mu_{100} = 0.305$

(a) Activation from both primary and secondary (i.e. semi-trapped) protons; (b) Activation from primary and secondary protons + prompt reactions from primary protons, and secondary protons and leptons; (c) 3σ minimum detectable polarization for $T_{obs} = 10^6$ s

• Minimum detectable polarization:

$$MDP_{3\sigma} = \frac{3\sqrt{C_S + B}}{\mu_{100}C_S\sqrt{T_{\text{obs}}}}$$

where *B* and C_S are the background and source count rates and μ_{100} the modulation

Backgrounds

- Sources of background
 - Same as LAT
 - CR primaries, trapped particles, particle albedo
 - Prompt CR secondaries
 - Atmo gammas and local gammas
 - » Atmosphere is brightest source
 - » Beware your spacecraft, the pressure vessel on your gas TPC, etc
 - And below 10 MeV, beware radioactivities
 - Self-activity and CR-induced activation

- Mitigating the backgrounds
 - Fight the bkg
 - Shielding
 - Passive
 - Active anti-coincidence shielding
 - Bkg discrimination
 - Pattern recognition
 - Pulse shape discrimination
 - Time-of-flight
 - Avoid the bkg
 - Optimal orbit
 - Minimize passive material
 - Choose low-bkg materials

Time of Flight coincidence - COMPTEL data

distance D1-D2 : 1.5 m \approx 5 ns)

channel width : 0.25 ns "upward bkg" from spacecraft and Earth

Which orbit? LEO or HEO?

- Low Earth Orbit
 - Advantages
 - Reduced CR background from geomagnetic shielding
 - Reduced prompt CR contamination
 - Reduced instrument and s/c activation
 - Note: want low inclination (i.e. near 0 deg)
 - » Maximizes geomagnetic screening, i.e. minimizes CRinduced background
 - » Improves livetime by avoiding SAA
 - Increased payload mass at lower launch cost
 - Disadvantages
 - Strong atmospheric γ-ray background
 - Earth occults ~1/3 of the sky
 - What's the right choice?

- High Earth Orbit
 - Advantages
 - Reduced atmospheric *γ*-ray background
 - Increased FOV (nearly 4π possible)
 - Disadvantages
 - Increased CR background
 - Increased prompt CR contamination
 - » High trigger rate, data volume
 - » More CRs to identify and reject
 - Increased instrument and s/c activation
 - Decreased payload mass and/or higher launch cost

Example trade study for Si ACT

Low Earth Orbit vs. High Earth Orbit Background

Grove

Backgrounds

- Beware of self-activity
 - Are lanthanum halides good choices for Compton calorimeter?
 - LaBr₃, LaCl₃
 - Fast scintillator, good energy resolution (~4% at 1 MeV), high stopping power
 - Hot
 - Study performed for ACT, GRIPS

Nal vs LaBr Compton Calorimeter

Bernard Phlips Code 7654 Naval Research Laboratory

Calorimeter

- Nal crystals are standard parts
- Frame will also support stack of silicon
- Need slots for cables from/to silicon detectors
- •Area inside calorimeter ~ 45 cm x 45 cm

• Beta-gamma decays look just like signal

- e.g. La self-activity for large instrument creates many kHz of nasty bkg

Lanthanum Activation

- \bullet Lanthanum is 99.91% $^{139}La,$ and 0.09% ^{138}La
- ¹³⁸La decays with 2 different decay schemes:- 788.7 keV gamma

- 1438.8 keV gamma and

a beta with 205 keV endpoint

- The activity is 1.8 Bq/cm³ for LaCl₃ and 1.62 Bq/cm³ for LaBr₃
- For 5 cm thickness, have ~30 000 cm³ calorimeter.
- ~50 000 Bq of activity within the instrument for LaBr3!

			Hits in Silicon							
		0	1	2	3	4	5	6	7	8
Hits in scintillator	0	16187	331	114	38	18	8	3	1	0
	1	27814	782	324	124	43	10	5	1	1
	2	22573	911	303	107	30	6	1	0	0
	3	9801	462	124	27	6	3	0	0	0
	4	2500	118	24	8	1	0	0	0	0
	5	442	21	4	1	0	0	0	0	0
	6	53	4	1	0	0	0	0	0	0
	7	5	1	0	0	0	0	0	0	0
	8	1	0	0	0	0	0	0	0	0

- We modeled the activity and logged the different types of events
- There are ~3500 coincidences/second between silicon and calorimeter from self activity!
- Lanthanum halides probably not the way to go for large instruments

Passive material is bad

Sensitivity Improvement with New Technologies

- Current simulations result in about 2-4% effective area
- This is $\leq 10\%$ of the potential events that could be used
- Clearly worth effort to substantially improve this performance

Reduce passive material Reduce thresholds

18 August 2005

ACT Team Meeting

- Recall Fermi LAT TKR passive material
 - Even after deleting W, trays are ~50% Si and ~50% passive Al-composite
 - Don't forget also that not all of Si is active

"Requirements" for high-res Compton tele

- Low Z scatterer
 - Minimizes Doppler broadening (most important below MeV)
 - Minimizes MCS of recoil electron, if tracking
- High Z absorber
 - Good stopping power to absorb scattered gamma (and minimize multi-Compton)
- High efficiency
 - Proper scatterer and absorber to give highest possible efficiency
 - Compact (as possible) to maximize geometric cross section for interaction
- Excellent energy resolution
 - Well matched with d^3x
- Fine position resolution
 - Well matched with dE
 - Thumb: ~1 mm and ~few keV are commensurate
- Low-power electronics
 - Preserve intrinsic dE, d³x of detectors while staying within power budget
- Minimal passive mass within detection volume
 - Interactions can be missed in passive material, and kill Compton performance
 - Minimize structural supports, co-located electronics
 - Minimize detector guard rings

Backup material

Dependence of photon interaction (mass attenuation coefficient) on material composition

- Photoelectric effect (photons see atomic shells)
 - Increases strongly with Z
 - Absorption edges (especially at K shell)
- Compton scattering (photons see individual electrons)
 - Scales with electron density (number of electrons per gram)
 - High in hydrogen due to lack of neutrons
 - Only varies by 20% in other elements
- Pair production (photons see nucleus)
 - Increases strongly with Z (approximately as Z²)
 - High energy limit (>> $m_e c^2$):

$$\sigma = \frac{7}{9} 4\alpha r_0^2 Z_{nucl} \left(Z_{nucl} + 1 \right) \ln \left(\frac{183}{3\sqrt{Z_{nucl}}} \right)$$

Justin Vandenbroucke

Physics of Particle Detectors

Slides borrowed from ... etc.

Instrumental Perspectives in the MeV domain

GAMMA CUBE

 γ^3

(LE – GLAST) A scintillation tracker

R. Chipaux, P. Laurent, F. Lebrun, R. Terrier

Instrument Options in the MeV range

What made progress so slow ?

Recent R&D projects towards a future MeV mission

Peter von Ballmoos, IRAP Toulouse

all sky Compton imager

design considerations for Compton Telescopes the asCi choice - detector and mission concept performance estimates one more thing

Peter von Ballmoos, IRAP Toulouse

NCT

The Nuclear Compton Telescope

A balloon-borne gamma-ray spectrometer, polarimeter, and imager

Steve Boggs for the NCT collaboration

Thick Silicon Compton Imager for ACT

Bernard Phlips Jim Kurfess Eric Wulf Elena Novikova Neil Johnson

18 August 2005

October 26, 2005

IEEE NSS N19-5 Puerto Rico

18 August 2005

Grove