

Dark Matters: The Search for the Universe's Missing Mass

R. Caputo UMD/NASA/GSFC

Fermi Summer School Lewes, DE 6 June 2017

YouTube: https://www.youtube.com/watch?v=Omjx3OKAGDo http://cse.ssl.berkeley.edu/bmendez/ay10/2002/notes/lec18.html ³

Mystery of Missing Mass

YouTube: https://www.youtube.com/watch?v=Omjx3OKAGDo http://cse.ssl.berkeley.edu/bmendez/ay10/2002/notes/lec18.html ³

R. Caputo, UMD/NASA/GSFC | Fermi Summer School 2017

Planck Collaboration, 2013

	Planck Collaboration Cosmological parameters ^[12]				
NASA		Description	Symbol	Value	
Baryonic Matter	Indepen- dent para- meters	Physical baryon density parameter ^[a]	$Ω_b h^2$	0.022 30 ±0.000 14	
		Physical dark matter density parameter ^[a]	$\Omega_c h^2$	0.1188 ±0.0010	
		Age of the universe	t _o	13.799 $\pm 0.021 \times 10^9$ years	
		Scalar spectral index	n _s	0.9667 ±0.0040	
		Curvature fluctuation amplitude, $k_0 = 0.002 \text{ Mpc}^{-1}$	$\Delta^2_{\rm R}$	2.441 ^{+0.088} ×10 ^{-9[15]}	
		Reionization optical depth	т	0.066 ±0.012	
Non-Baryonic Matter	Fixed para- meters	Total density parameter ^(b)	Ω_{tot}	1	
		Equation of state of dark energy	w	-1	
		Sum of three neutrino masses	Σm _v	0.06 eV/c ^{2[c][11]:40}	
		Effective number of relativistic degrees of freedom	N _{ett}	3.046 ^{[d](11]:47}	
		Tensor/scalar ratio	r	0	
		Running of spectral index	$d n_a / d \ln k$	0	
The Friedmann Equation	Calcu- lated values	Hubble constant	H 0	67.74 ±0.46 km s ⁻¹ Mpc ⁻¹	
		Baryon density parameter ^[b]	Ω _b	0.0486 ±0.0010 ^[0]	
		Dark matter density parameter ^[b]	Ω _c	0.2589 ±0.0057 ^[1]	
		Matter density parameter ^[b]	Ω _m	0.3069 ±0.0062	
		Dark energy density parameter ^[b]	Ω _Λ	0.6911 ±0.0062	
		Critical density	$ ho_{\rm crit}$	$(8.62 \pm 0.12) \times 10^{-97} \text{ kg/m}^{3[g]}$	
		Fluctuation amplitude at $8h^{-1}$ Mpc	$\sigma_{ m B}$	0.8159 ± 0.0086	
		Redshift at decoupling	Ζ.	1 089.90 ±0.23	
		Age at decoupling	t.	$377700\pm3200\text{years}^{[15]}$	
Caputo, UMD/NASA/GSFC Fermi Summer Schoo		Redshift of reionization (with uniform prior)	z _{re}	$8.5 \frac{+1.0}{-1.1}$	

R

Cosmic Microwave Background

Planck Collaboration, 2013; SubbaRao et al. (2008); Bolshoi Simulation, J. Primack et al.,2011 R. Caputo, UMD/NASA/GSFC I Fermi Summer School 2017_{NASA}, APOD, 2006 August 24, J. A. Tyson et al., Astrophys.J.498:L107,1998

Planck Collaboration, 2013; SubbaRao et al. (2008); Bolshoi Simulation, J. Primack et al.,2011 R. Caputo, UMD/NASA/GSFC I Fermi Summer School 2017_{NASA}, APOD, 2006 August 24, J. A. Tyson et al., Astrophys.J.498:L107,1998

Large Scale Structure Simulation

Planck Collaboration, 2013; SubbaRao et al. (2008); Bolshoi Simulation, J. Primack et al.,2011; R. Caputo, UMD/NASA/GSFC I Fermi Summer School 2017_{NASA}, APOD, 2006 August 24, J. A. Tyson et al., Astrophys.J.498:L107,1998

Blue: mass from lensing

Planck Collaboration, 2013; SubbaRao et al. (2008); Bolshoi Simulation, J. Primack et al.,2011; R. Caputo, UMD/NASA/GSFC I Fermi Summer School 2017_{NASA}, APOD, 2006 August 24, J. A. Tyson et al., Astrophys.J.498:L107,1998

Planck Collaboration, 2013; SubbaRao et al. (2008); Bolshoi Simulation, J. Primack et al.,2011; R. Caputo, UMD/NASA/GSFC I Fermi Summer School 2017_{NASA}, APOD, 2006 August 24, J. A. Tyson et al., Astrophys.J.498:L107,1998

What do we know?

R. Caputo, UMD/NASA/GSFC | Fermi Summer School 2017

What do we know?

constraints from CMB, N-body simulations Particle(s)

constraints from CMB, primordial nucleosynthesis

Potential Candidates

Potential Candidates

Potential Candidates

C	cross section	on Force	Designation	
	10 ⁻²⁴ cm ²	nuclear (~10 fm)²		
pico-	10 ⁻³⁶ cm ²	Weak	Weakly interacting	
femto-	10 ⁻³⁹ ст ²	Ultra-Weak	LHC probes	

Velocity (σv) Cheat Sheet

Velocity (σv) Cheat Sheet

Detecting the Elephant in the Room

Indirect Detection

Dark Matter Searches

Fermi

Indirect Detection

Direct Detection

Collider

ATLAS/CMS

Standard Model

Appear as a line in the γ -ray spectrum Not Astrophysical Source! Line must be Dark matter

R. Caputo, UMD/NASA/GSFC I Fermi Summer School 2017

Observed = Particle Properties x Astrophysics Properties

Dwarf Spheroidal Galaxies

R. Caputo, UMD/NASA/GSFC | Fermi Summer School 2017

Sextans

1500

R. Caputo, UMD/NASA/GSFC I Fermi Summer School 2017

R. Caputo, UMD/NASA/GSFC I Fermi Summer School 2017

R. Caputo, UMD/NASA/GSFC I Fermi Summer School 2017

R. Caputo, UMD/NASA/GSFC I Fermi Summer School 2017

Di Cintio et al., MINRAS (2013) 437 415 20

Small Magellanic Cloud

Looking for Dark Matter

Looking for Dark Matter

R. Caputo, UMD/NASA/GSFC I Fermi Summer School 2017

Looking for Dark Matter

Small Magellanic Cloud

Small Magellanic Cloud

R. Caputo, UMD/NASA/GSFC I Fermi Summer School 2017

R. Caputo et al., PRD 2016 24

Dark Matter Searches

Fermi

Indirect Detection

Direct Detection

Collider

R. Caputo, UMD/NASA/GSFC | Fermi Summer School 2017

ATLAS/CMS

LHC Experiments: ATLAS/CMS

R. Caputo, UMD/NASA/GSFC I Fermi Summer School 2017

LHC Experiments: ATLAS/CMS

R. Caputo, UMD/NASA/GSFC | Fermi Summer School 2017

Missing Energy: the Challenge

Missing Energy: the Challenge

Missing Energy: the Challenge

Mono-Z Searches

Mono-Z Searches

No explicit dependence on models (ie: Supersymmetry)

> Signature: Z produced with Missing Energy

A Complementary Approach

R. Caputo, UMD/NASA/GSFC I Fermi Summer School 2017 ATLAS Collaboration, Eur. Phys. J. C, 2015

Dark Matter Searches

Indirect Detection

Direct Detection

Fermi

Collider

ATLAS/CMS

χ

Direct Searches

Scintillation

Vibrations

Nuclear recoil

Direct Searches

http://dx.doi.org/10.1016/j.ppnp.2011.01.003

Direct Searches

R. Caputo, UMD/NASA/GSFC I Fermi Summer School 2017

A Complementary Approach

R. Caputo, UMD/NASA/GSFC I Fermi Summer School 2017 R. Caputo, ATLAS Collaboration, Phys. Rev. D. 90, 012004 (2014)33

R. Caputo, UMD/NASA/GSFC I Fermi Summer School 2017

A Complementary Approach

Confirmation from different experiments is paramount to discovery

The Next Generation...

Fermi	DES	LSST	CTA	MeV Mission	
Today	2018	2020	2023	2025	

The Next Generation.

Proposed new gamma-ray missions...

All-sky Medium Energy Gamma-ray Observatory: AMEGO

enhanced ASTROGAM: eASTROGAM

Advanced Energetic Pair Telescope: AdEPT

Intense Star formation at GC necessitates understanding of the MeV rage

arXiv:1206.0772

Astropart.Phys. 59 (2014) 18-28

The Next Generation...

The Future

*At least for WIMPs

Fín

- What is Dark Matter?
- A Complementary Approach

DARK MATTER

?

given to material in the Universe that does not emit or reflect light but is necessary to explain observed gravitational effects in galaxies and stars. Dark matter, along with dark energy, totals 96% of the Universe, yet it remains a mystery as to what exactly it is

DARK MATTER is the name

Acrylic felt, wool felt, and fleece with gravel fill for maximum mass.

Packaged in a black opaque bag designed for concealing contents.

UON PHOTON NEUTRINO TACHYON ELECTRON UP QUARK DOWN QUARK TAU NEUTRINO MUON UP O ELTRON DOMINI QUARK CTAU GLUON DARK MATTER NEUTRINDTACHYON ELECTRON. UP OLARK DOW LTRINO MUON UP QUARK PROTON NEUTRINO TAU GLUON PHOTON NEUTRINO TAU GLUO SPARENCICE FROM OUT ON NEUTRINO MUON UP OLARK TAU GLUON FROTON NEUTRINO MUON UP OLARK PROTON NEUTRINO