ALL-SKY MEDIUM ENERGY GAMMA-RAY OBSERVATORY

A Discovery mission for the MeV gamma-ray band

R. Caputo (UMD/NASA/GSFC)

8 June 2017 Fermi Summer School, Lewes, DE

The Gamma-ray Sky circa 1991...

The γ -ray Universe as seen by

FEFGREAT

Ground breaking science: Discovery of γ-ray pulsars Measurement of extragalactic background light Dispersion of space-time -(limits on Lorentz invariance) Limits on thermal relic WIMP dark matter, Axions, sterile neutrinos

Revolution in High Energy Gamma-Ray Physics: 2011 Rossi Prize (Atwood, Michelson, Fermi-LAT team) 2012 Panofsky Prize (Atwood) 2014 Manne Siegbahn Medal (Atwood)

R. Caputo, UMD/NASA/GSFC | Fermi Summer School 2017

circa 2000...

The MeV Band

Deepec Cote P. BELO ke30-NA&VO MeV

Guaranteed Discovery Space

What will we find in this region of the spectrum??

What can you do with MeV data?

We want you... to tell us what you think would be interesting for your work!

Science Objectives

Extreme Astrophysics

How do we resolve the physics of astrophysical objects that have extreme densities, gravity, acceleration and/or magnetic fields?

How do extreme phenomena impact the evolution of the universe?

Fundamental nature and evolution of the large population of supermassive black holes and highly-magnetized neutron stars

Gamma-ray Bursts

NASA/DOE/Fermi LAT Ckbabohatton et. al, 2013

R. Caputo, UMD/NASA/GSFC | Fermi Summer School 2017

- Jet mission mechanism
 - full spectral energy distribution vital

J 1653-329, a candidate PeV neutrino emitter ₉

- Class whose peak power output ~1MeV
 - most luminous
 - harbor most massive black holes
 - persistent gamma-ray sources

Compact Objects: Neutron Stars

Core collapse of a massive star after a supernova

electrons/protons forced into neutrons

held up by neutron degeneracy pressure

~100 million neutron stars in the Milky Way

Neutron Stars

- Magnetars the strongest magnetic fields in the Universe
- Pulsars rapidly rotating (~ms to s) over 200 known gamma-ray pulsars

New types of astrophysical object have peak power output in the MeV band and how do they work?

Discovery Space

10-9

E² dN/dE (erg cm⁻² s⁻¹)

- 1/3 of Fermi-LAT sources are unidentified (>1000)
 - Bridge between highenergy gamma-ray regime and X-ray regime
- Below 200 MeV: discovery of many new sources and source classes

E (MeV)

102

COMPAIR 30 Sensitivity Extrapolated LAT

omptel 3C 273

10³

Detecting Dark Matter

MM et al. 2013, 2014]

MeV Dark Matter: Axions

- Axions in neutron stars (hep-ph/0505090)
 - emission process for axions with mass up to a few MeV
 - production in Gamma Ray Bursts

Electromagnetic counterparts of neutrino and gravitational wave sources

Multi-messenger Astrophysics

Gravitational Waves

How do we answer these questions?

Science Requirements

Goal	Energy Range	Spatial Resolution	Time Resolution	Sensitivity	FoV
Jets	~ 0.5 MeV to GeVs	~ 1 deg	< msec	10 ⁻¹⁰ erg/cm ² /s	Large
Compact Objects	~ 0.2 MeV to GeVs	~ 1 deg	< msec	10 ⁻¹⁰ erg/cm ² /s	Large
New Sources	~ 1MeV to GeVs	~ 1 deg	< msec	10 ⁻¹⁰ erg/cm ² /s	Large

large field-of-view instrument with good angular and energy resolution, optimized for continuum sensitivity and time domain science

Goals

An instrument that satisfies the following:

- Wide-field monitor the whole gamma-ray sky
- Energy range 200 keV >10 GeV
- Sensitivity ~10-50 times better than COMPTEL at ~ 1 MeV
- Angular resolution 3-5 times better than Fermi LAT at 20-100 MeV

Challenges

Between 0.1 and 100 MeV, gamma-rays interact via two different physical processes To fill the "MeV Gap" need to consider both Compton Scattering and Pair Production

Compton/Pair Production Boundary

AMEGO Instrument

Performance Plots

Performance Plots

GRBs... what about them?

• Goal: Detect >500 Blazers to z~6-8

Compact Objects: Magnetars

Neutron Stars with Extreme Magnetic Fields

Strong magnetic fields, rotation period(1-10 s) <30 known

Soft Gamma-ray repeaters Anomalous x-ray pulsars

MeV Messes are Holding Back Progress

MeV Excess: Cosmic

Also: 511 keV excess unsolved, Type Ia supernovae not understood, MeV sky never properly studied

New MeV missions are essential and urgent

John Beacom, The Ohio State University

Dark Matter and Gamma Rays, Austria, December 2015 29

- Axions produced in supernovae (arXiv:1410.3747)
 - core collapse supernova (SN1987A)

These are just some of the topics we're actively working on...

There's also polarization, SN1a, nuclear lines... and much much more

Current Mission Status

- NASA probe scale mission
 - Funded for to develop a prototype detector for beam tests and balloon flight
- What we would like...
 - Interest for you/your advisor we'd like you to get involved...

https://asd.gsfc.nasa.gov/amego/index.html

The Gamma-ray future

- Critical for understanding the most highly energetic universe
 - all-sky instrument with continuum sensitivity
- Guaranteed new discovery space
- Uniquely able to participate in multi-wavelength and multi-messenger astronomy
 - synergies with GW/Neutrino/ground gamma-ray instruments, current/future space missions... etc.

Questions?

In which is the blue