
DST/Tuple	Maker



DSTs:
How	it	works:
• generates	ROOT	file	using	C++	API	that	contains	rough	summary	of	all	final	

particles/collections	from	recon	file
Advantages:
• Multiple	collections	stored	in	single	file	(access	to	tracks,	clusters	separate	from	

vertex	collections)
• Robust	way	to	look	at	full	event	picture
Things	to	consider:
• No	easy	way	to	look	at	vertexed particles	in	different	constrained	collections	

(comparing	unc and	bsc vertex	collections)
• Not	easy	to	make	plots	from	the	ROOT	command	line
• Significant	development	of	analysis	codes	using	DST	offline
How	I’ve	used	it:
• 3	prong	studies,	WAB	studies
Experience:
• Cumbersome	to	get	libraries	and	everything	working	well	



Tuples:
How	it	works:
• Add	variables	directly	in	hps-java,	run	over	recon/skim	files,	outputs	tridents,	

mollers,	and	fee	tuples.
Advantages:
• Fast	running	on	recon	files,	runs	easily	using	hps-java	framework
• Contains	relevant	collections
• Easy	to	plot	stuff	from	the	command	line
Things	to	consider:
• Only	contains	relevant	collections	(not	useful	for	WAB	studies)
• If	you	need	something,	may	have	to	go	back	to	hps-java	to	add	it
How	I’ve	used	it:
• Vertex	analysis,	timing	calibration
Experience:
• Easy	if	you	know	how	to	use	hps-java



Key	Points:

• We	absolutely	need	both!	They	serve	different	purposes

• The	DSTs	are	a	robust	way	to	study	events.	Current	bump	hunt	codes	use	this.

• The	Tuples	are	very	accessible	if	you	need	to	add	variables,	study	event	anomalies,	and	
look	at	the	effects	of	different	vertex	constraints

• Both	are	maintained	in	GitHub

• If	you	want	to	add/change	something	in	the	TupleMaker,	then	just	make	an	issue	in	
GitHub,	and	follow	standard	HPS	coding		(if	you	know	how	to	use	hps-java,	then	it’s	
pretty	easy)


