Momentum reconstruction – systematics studies II

Alessandra Filippi Mar 13, 2017

Systematic studies of reconstruction precision

- A few more studies before modifying the global z scale...
 - 1. Study of minimum systematic error determined by the reconstruction procedure
 - 2. Study of possible dependencies on magnetic field strength
- Generation of electrons with SLIC (single particle gun) in the HPS acceptance with fixed momentum, fieldmap and zero width
 - Several values of injected momentum, from 0.5 to 2.1 GeV/c
 - Beam along z axis with 5 deg dispersion
 - Beamspot parameters: (0.,0.,0.)
 - It (should) include Eloss through materials, multiple scattering (G4 defaults)
- Test: how does the reconstruction and GBL respond for momentum and impact parameters reconstruction?
 - Any momentum dependence?
- Tested geometry: v 5.1 (with my SVT alignment version) + fieldmap 2015 (0.24 T)
- 200000 generated tracks per sample

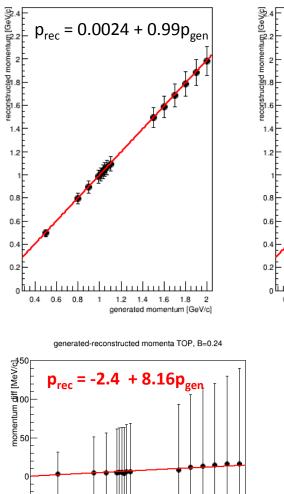
Momentum reconstruction

reconstructed vs generated momenta BOT, B=0.24

 $p_{rec} = 0.0016 + 0.99 p_{ger}$

reconstructed vs generated momenta (TOP-BOT), B=0.24

T-B difference


1.2

1.4 1.6

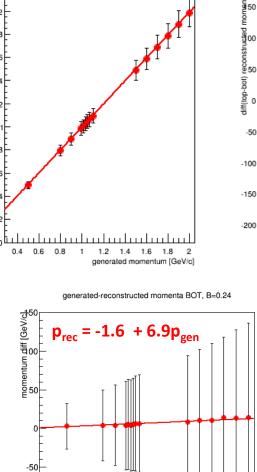
denerated momentum [GeV/c]

0.4 0.6 0.8

reconstructed vs generated momenta TOP, B=0.24

-50

-100


0.4 0.6 0.8

1

1.2 1.4 1.6

1.8

generated momentum [GeV/c]

6.............................

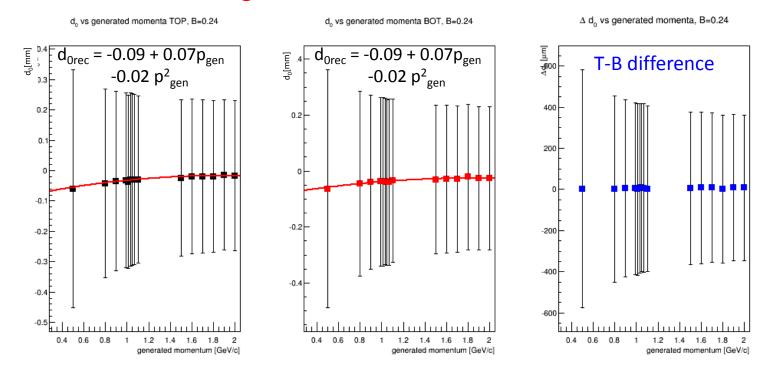
1.2

1.4 1.6

generated momentum [GeV/c]

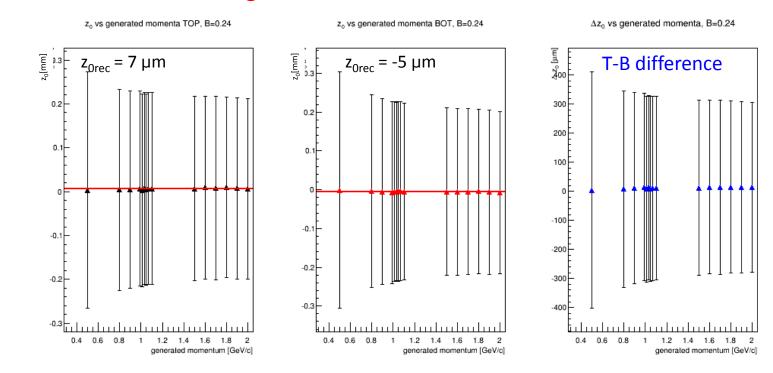
1.8

0.8


-100

0.4 0.6

- Errors: sigmas of the distributions
 - Linear dependence for T and B
- No remarkable
 difference btw
 T,B


- Slight rise of reconstructed momentum value with increasing momentum
- Distribution sigmas rise with momentum
- Reconstructed momentum always underestimated
- At 1 GeV/c: Δp = 5-6 MeV systematic offset on reconstructed momentum

d₀ reconstruction

- Errors: sigmas of the distributions
- Quadratic dependence on generated momentum for T and B (very large errors if one uses sigmas as errors in the fit)
- No difference btw T,B
- Slight rise of reconstructed momentum value with increasing momentum
- Distribution sigmas reduce with momentum
- At 1 GeV/c: $\Delta d_0 = -40 \mu m$ minimum systematic offset (for both T&B)

z₀ reconstruction

- Errors: sigmas of the distributions
- No dependence on generated momentum for T and B
 - A better fit can be done using the error on the mean value of the gaussian distribution
- TOP: positive, BOT: negative (well within resolution)
- Distribution sigmas slightly reduce with momentum
- At 1 GeV/c: $\Delta z_0 = ~7 \mu m$ for TOP, -5 μm for BOT

Summary

- The effect of Eloss and multiple scattering as on generated electrons is small and not enough to explain the 20 MeV/c offset wrt to nominal elastic peak momentum seen in 2015 data
 - The reconstructed momentum is underestimated by
 - ~5.7 MeV/c for 1 GeV/c tracks
 - ~6 MeV/c for 1.056 GeV/c tracks
 - ~ 14 MeV/c for 2 GeV/c tracks
 - Very similar for top and bottom
 - The d₀ impact parameter has a (sort of) quadratic dependence, and is always negative
 - ~-40 μ m for 1 GeV/c tracks
 - \sim -38 μ m for 1.056 GeV/c tracks
 - \sim -30 μ m for 2 GeV/c tracks
 - The z_0 impact parameter is constant
 - ~ 7 µm for top (positive)
 - ~ -5 μ m for bottom (negative)
- Next test: what happens if the field normalization is changed?