Beamspot inclusion/global translations - 2

Alessandra Filippi

Feb 6, 2017

Beamspot search with millepede

- With some iterations the x_{T}, y_{T} beamspot coordinates can be included in the reconstruction
- Convergence to narrow distributions
- Good alignment disruption
- Can a good alignment be recovered by floating again the sensors, including the fictitious sensor 0?
- Center of the sensor: beamspot coordinates
- Same center for top/bot ax/stereo
- MP constraints to fix floats
- Answer: NO
- Several attempts to float sensors, all of them not excitingly successful

Some results with beamspot MP inclusion

- Example: float $\mathrm{L} 0+\mathrm{L} 1+\mathrm{L} 4$
- uT for LO, uT + wT + uT (3 iterations) for L1-L4
- L1-L4 modified offsets only are not inserted in the reconstruction, no LO (no corresponding geo volume existing in the geometry)
- Reconstruction with beamspot coordinates: bad alignment
- Some improvements, but MP does not allow to recover previous alignment quality
- Worst of all: the elastic peaks for t / b move farther away, instead of converging
- One could insist moving other layers...

Restart from scratch...

- Start from best alignment version ok for curved and straight tracks
- Insert global offsets in the compact.xml file, as deduced from data
$-d_{0} \sim x_{T} \rightarrow u$ translations
$-\mathrm{z}_{0}{ }^{\sim} \mathrm{y}_{\mathrm{T}} \rightarrow \mathrm{v}$ translations
- Take care of signs!!
- A part of the tweaks introduced in the current geometry by Sho already include such kind of corrections
- But new offsets are needed as the internal alignment is different

impact parameters - start

No beamspot

Test: global translations along u

(slightly worse)

$\frac{0}{\frac{0}{4}} 0000$		h_p_gbl_top	
	θ	Entries	699322
		Mean	1.034 ± 0.000
		Sigma	0.07888 ± 0.00017
			p_gbl_bot
		Entries	745653
		Mean	1.037 ± 0.000
25000 E		Sigma	0.07987 ± 0.00017

$\Delta \mathrm{p}_{\mathrm{el}}=-0.003 \mathrm{GeV} / \mathrm{c}$
Elastic peak not moved Still underestimated

Global translations along w

Use of tracks selected in the elastic peak

- Study of the profile distributions of $\mathrm{y}_{\mathrm{T}} \mathrm{vs} \tan \lambda$
- One should be able to infer the z coordinate of the target, by solving:

$$
y_{T}(z=0)=\underbrace{y_{\text {beamspot }}}_{\mathrm{p} 0}-\underbrace{z_{\text {tgt }}}_{-\mathrm{p} 1} \cdot \tan \lambda
$$

Next steps

- Study on how to include this information in the compact.xml file (sign consistency for t\&b modules)
- Inclusion of global translations along v (pattern already present in existing compact.xml file)
- Further studies on additional tweaks depending on λ and other angles
- How it possible to get narrower distributions for impact parameters?
- Validate each step with straight tracks

