Beamspot inclusion and millepede adjustments - 1

Alessandra Filippi Jan 23, 2017

Present situation and procedure

- Found a good geometry which provides acceptable residuals for both curved and straight tracks
 - Recall: this does not happen with the current geometry!
- Good agreement between momentum spectra for top and bottom
- Bad agreement between top and bottom impact parameters (d₀, z₀) and coordinates (x_T, y_T) @ z=0 (assumed as origin point of the helix in the curvilinear reference system)
- Problem: how to improve the impact parameter agreement without spoiling (or, if possible, improving) the current alignment quality?
- 2 steps procedure:
 - 1. Deduce the beamspot position from the experimental distributions, insert it as extra point in the reconstruction, check improvement, repeat until reasonable convergence
 - 2. Run millepede over reconstructed tracks with additional beamspot point, and produce a modified alignment taking into account the new point coordinates (which are allowed to be floated), check improvement, provide the reconstruction with the new information, repeat 1 (attention to the differen reference systems!)

GBL momentum: top vs bottom - start

to be compared: momenta with best alignment on curved tracks + tweaks (latest excluded)

- Systematic underestimation wrt to beam energy nominal value (~ 20 MeV/c)
- Good agreement of mean values of elastic peaks for top and bottom tracks (no selections)

impact parameters (after GBL) - start

How to add the beamspot in the reconstruction

- Beamspot coordinates in the perigee reference system (0., d₀, z₀) inserted as xml parameters in the lcsim steering file
 - Taken as mean value of top/bottom impact parameters
 - Input beamspot coordinates: (x=0, y=d₀, z=z₀)
 - In the reconstructions these coordinates are converted to curvilinear coordinates of a point of the helix
- Beamspot width in y-z inserted as well
 - Taken as difference between top and bottom mean values
- Reconstruct data and perform quality check
 - Reconstruction efficiency (in some cases with large widths GBL fails)
 - Residuals/kinks stability/behavior
 - improvement of top/bottom agreement for impact parameters
 - Closer mean values
 - Narrower distributions
 - Calibration of elastic peak momentum for top/bottom
- Procedure available (at present) for curved tracks reconstruction only
- Some iterations needed (order 3-4)

impact parameters (after GBL) – start

No beamspot

impact parameters (after GBL) – 1st iteration

Input beamspot coordinates: y = -0.717 mm , Δy = 0.373 z = -0.063 mm, Δz = 0.046

impact parameters (after GBL) – 2nd iteration

1-2-3

Input beamspot coordinates: y = -0.716 mm , Δy = 0.210 z = -0.064 mm, Δz = 0.062

impact parameters (after GBL) – 3rd iteration

impact parameters (after GBL) – 4th iteration

Input beamspot coordinates: y = -0.696 mm , Δy = 0.059 z = -0.059 mm, Δz = 0.021

Summary: four beamspot iterations

	lter 0	lter1	lter2	lter3	iter4
<y> (mm)</y>	-0.717	-0.716	-0.699	-0.696	-0.691
Δy (mm)	0.373	0.210	0.122	0.056	0.082
<z> (mm)</z>	-0.063	-0.064	-0.062	-0.059	-0.059
Δz (mm)	0.046	0.062	0.043	0.021	0.006
(GeV/c)	1.034	1.036	1.036	1.037	1.037
Δp (MeV/c)	2.85	-22	-30.5	-37.0	-42.0

- Top/bottom d_0 and z_0 impact parameter agreee
- Narrower width of the distributions
- Inserting the beamspot information IS NOT a weak constraint for aligment:
 - Residuals are in general worsening
 - The calibration of the elastic peak worsens as well
 - Improvement only for the bottom section
- Can a new MP alignment applied at this point provide a better adjustment?

Second step: adjust residuals

- The beamspot is intended as a new (fictitious) layer with given origin coordinates
 - 4 new (pseudo)sensors: top + bottom, axial+stereo
- Possibility to include millepede floats to adjust the origin coordinates for each sensor
 - 6 degrees of freedom for each sensor
 - Rotations are not meaningful (kept for code consistency)
 - To be constrained: bottom and top offsets must be the same to converge to the same point
- Same procedure
 - the GBL file must contain the coordinate of the beamspot as a new point for the track fit
 - no problem of principle to mix curved tracks including beamspot and straight tracks without it (could be interesting to implement it)
- Problem (working on): MP delivers offsets in the sensor reference system
 - How to translate them into the beamspot coordinates provided in the perigee frame?
- To be continued...