Lossless compression
of LCLS data

2017 SSRL/LCLS Users’ Meeting
Mikhail Dubrovin

o~ P> NATIONAL
d | A-Q ACCELERATOR
P b NN\ | /BORATORY




Problem

LCLS-II vs. LCLS data flow and volume increase
x102 + 103.

Need to think about disk space saving.

What could we get with lossless compression
of data?
— how much disk space can be saved?

— how much computing time it needs to compress,
decompress data? (very arbitrary)



Definitions

Compression:

- Compression

Compressed
—) (s

Compression factor (c.f.) = <Data size>/<Compressed data size>

algorithm

De-compression:

DI

Compressed ECRCOR =D compressed
algorithm data

data

Lossless compression: De-compressed data = Data



Data entropy

Wikipedia: Entropy (information theory)

Named after Boltzmann's H-theorem, Shannon defined the
entropy H of a discrete random variable X with possible

values {x1, ..., xn} and probability mass function P(X) and
|(X)-information content, which can be explicitly written as:

H(X) = iP(mi)I(mi) = — Z":P(a:i)logb P(z;),

H for b=2 is an average number of bits needed to code each
data value (word).

Implemented in pyimgalgos/src/Entropy.py



CSPAD Data

shape=(32,185,388)
Size=2296960 pix
dtype=(u)int16

Raw data entropy H=7.95,
c.f.=2.01

Calibrated data
(subtracted pedestals)
H=5.84,

c.f.=2.74

1000

1500

1000

1000

1500

1500

1750

1500

11250

‘luuu

500

250

140000

120000 -

L00000

750000

Q
700 800 900 1000 1100 1200 1300 1400 1500 1600

200000

150000

100000




Other calibration option

Subtraction of pedestals helps with
compression. Does it help if we apply more
corrections?

Subtraction of water-ring background
e “shifts” and “smears” spectrum

* |Image (16-bit) array entropy H=6.28
* Estimated compression factor 2.55

Data spectrum is worse for compression

100000

50

1000

1500

1000 1500



Test of GZIP

e gzip-CLI — most popular and productive file-to-file
compressor

— gzip -c test.xtc > test.xtc.gz

— compression factor = 1.89, time = 3sec/event...

* not optimal — xtc contains image and non-image
data and metadata

e slow



Test of GZIP levels

» zIlib-(gzip API) compression for single CSPAD image, test level:

Comp.factor t(msec)
decomp

0 1.000

1 1.572 109 27
2 1.580 125 29
3 1.592 171 28
4 1.591 159 29
5 1.592 261 31
6 1.621 597 27
7 1.624 610 27
8 1.624 636 27
9 1.624 612 27

 compression time rises with level, but factor almost flat



GZIP and LZF in HDF5

HDF5 has a few embedded compressors

« gzip with default level=4 C°mp’es fomp
* input size=4594000 byte actor

 timeincludes saving in file aw gzip False 1.58
gzip True 1.95 147
lzs False 1.05 108
* Compression factor of calib data |zs True 1.70 75
is larger then raw data calib gzip False 2.07 168
* |zf is faster than gzip gzip True 2.19 183
e gzip compression factor is larger |zs False 1.35 101
than lzf |zs True 1.47 87

* parameter Shuffle (word-byte separation) gives significant effect

Filters szip, |zo, blosc, bzip2 are unavailable in our installation of HDF5



Home-made compressors for LCLS data

Compressor for LCLS detector int16 data, Igor Gaponenko :

* estimates dataset spread, defines optimal offset,
e use 16- and 8-bit words to save data with positions coded in metadata
* Features

Optimized to work with 16-bit detector data only (not with xtc or hdf5 files containing
metadata).

By design compression factor <2.
Single array of data is split and processed in multi-threads (inside compression algorithm).
Up to =two order of magnitude faster than gzip (Igor’s statement).

Further specialization of data (separation of signal and background regions between threads)
may improve compression factor.

Compressors Hist16 & HistN, Matt Weaver

* Available in package pdsdata/compress

* Histl6 - the same as Igor's compressor, does not use multi-threading - slower than lgor’s
* HistN — uses 16-bit and 8,7,6...-bit words, compression factor HistN upto =2.



Summary

A few standard and home-made lossless compression
algorithms were considered against LCLS typical 16-bit
detector data. The best compression factor achieved =2.2

Data entropy is estimated as H=5.8 (at 16-bit word) for
pedestal subtracted data, c.f.=2.7

Per-pixel-in-time entropy may be better, but not too much.
Makes problematic per event access.

Compression factor 2.2+2.7 is helpful but does not
completely solve disk space saving problem.



