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Problem

LCLS-II vs. LCLS data flow and volume increase
x102 + 103.

Need to think about disk space saving.

What could we get with lossless compression
of data?
— how much disk space can be saved?

— how much computing time it needs to compress,
decompress data? (very arbitrary)



Definitions

Compression:
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Lossless compression: De-compressed data = Data



Data entropy

Wikipedia: Entropy (information theory)

Named after Boltzmann's H-theorem, Shannon defined the
entropy H of a discrete random variable X with possible

values {x1, ..., xn} and probability mass function P(X) and
|(X)-information content, which can be explicitly written as:

H(X) = iP(mi)I(mi) = — Z":P(a:i)logb P(z;),

H for b=2 is an average number of bits needed to code each
data value (word).

Implemented in pyimgalgos/src/Entropy.py



CSPAD Data

shape=(32,185,388)
Size=2296960 pix
dtype=(u)int16

Raw data entropy H=7.95,
c.f.=2.01

Calibrated data
(subtracted pedestals)
H=5.84,

c.f.=2.74
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Other calibration option

Subtraction of pedestals helps with
compression. Does it help if we apply more
corrections?

Subtraction of water-ring background
e “shifts” and “smears” spectrum

* |Image (16-bit) array entropy H=6.28
* Estimated compression factor 2.55

Data spectrum is worse for compression
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Test of GZIP

e gzip-CLI — most popular and productive file-to-file
compressor

— gzip -c test.xtc > test.xtc.gz

— compression factor = 1.89, time = 3sec/event...

* not optimal — xtc contains image and non-image
data and metadata

e slow



Test of GZIP levels

» zIlib-(gzip API) compression for single CSPAD image, test level:

Comp.factor t(msec)
decomp

0 1.000

1 1.572 109 27
2 1.580 125 29
3 1.592 171 28
4 1.591 159 29
5 1.592 261 31
6 1.621 597 27
7 1.624 610 27
8 1.624 636 27
9 1.624 612 27

 compression time rises with level, but factor almost flat



GZIP and LZF in HDF5

HDF5 has a few embedded compressors

« gzip with default level=4 C°mp’es fomp
* input size=4594000 byte actor

 timeincludes saving in file aw gzip False 1.58
gzip True 1.95 147
lzs False 1.05 108
* Compression factor of calib data |zs True 1.70 75
is larger then raw data calib gzip False 2.07 168
* |zf is faster than gzip gzip True 2.19 183
e gzip compression factor is larger |zs False 1.35 101
than lzf |zs True 1.47 87

* parameter Shuffle (word-byte separation) gives significant effect

Filters szip, |zo, blosc, bzip2 are unavailable in our installation of HDF5



Home-made compressors for LCLS data

Compressor for LCLS detector int16 data, Igor Gaponenko :

* estimates dataset spread, defines optimal offset,
e use 16- and 8-bit words to save data with positions coded in metadata
* Features

Optimized to work with 16-bit detector data only (not with xtc or hdf5 files containing
metadata).

By design compression factor <2.
Single array of data is split and processed in multi-threads (inside compression algorithm).
Up to =two order of magnitude faster than gzip (Igor’s statement).

Further specialization of data (separation of signal and background regions between threads)
may improve compression factor.

Compressors Hist16 & HistN, Matt Weaver

* Available in package pdsdata/compress

* Histl6 - the same as Igor's compressor, does not use multi-threading - slower than lgor’s
* HistN — uses 16-bit and 8,7,6...-bit words, compression factor HistN upto =2.



Summary

A few standard and home-made lossless compression
algorithms were considered against LCLS typical 16-bit
detector data. The best compression factor achieved =2.2

Data entropy is estimated as H=5.8 (at 16-bit word) for
pedestal subtracted data, c.f.=2.7

Per-pixel-in-time entropy may be better, but not too much.
Makes problematic per event access.

Compression factor 2.2+2.7 is helpful but does not
completely solve disk space saving problem.



