Computing Division Scientific Computing Services

Unix Town Hall Meeting

Yemi Adesanya, September 22, 2016

Unix Town Hall Meeting

SLAC

Objectives:

- Communication
- Collaboration

Join our mailing list: unix-community@slac.stanford.edu

email to: listserv@slac.stanford.edu

subscribe unix-community

Scientific Computing Services

SLAC

Scientific Computing Services (confluence) page https://confluence.slac.stanford.edu/display/SCSPub/Scientific+Computing+Services+Home

New web page under development

https://internal.slac.stanford.edu/computing/scientific-computing-services

unix-admin@slac.stanford.edu support/questions

yemi@slac.stanford.edu 650-926-2863

Unix Town Hall Meeting

SLAC

Agenda:

- Announcements
- Unix Platform
- Storage & Data Management
- Cloud Compute
- Cyber Security update
- Questions/Discussion

AnnouncementsScientific Computing Services

Yemi Adesanya, September 22, 2016

Welcome (Back)!

- Welcome, Christa Doane!
- Joined the SCS team in August
- Certified RHEL7 Admin

- Karl Amrhein is back in town!
- Working remotely from Denver, CO
- Linux, Cloud and Virtualization

Conferences and Training

- CHEP 2016 hosted by SLAC and LBNL
 - October 10th-14th at the San Francisco Marriott Marquis
- HEPiX Fall 2016
 - October 17th-21st at LBNL
- NVIDIA providing 2-day GPU training for free
 - November 2nd & 3rd onsite at SLAC
 - Hands-on tutorials bring your laptop
 - Registration details to follow via unix-community mailing list
- SC(SuperComputing)16 conference
 - November 13th-18th in Salt Lake City, UT
 - SLAC partnering with Campus HPC team to highlight research computing
 - Can you provide content for the booth? Contact Neal Adams neal@slac.stanford.edu

Unix Platform Scientific Computing Services

Karl Amrhein, September 22, 2016

Unix Platform Update

- Red Hat Enterprise Linux and CentOS
- Chef configuration management
- FastX
- OpenStack
- Science VMs on VMware or OpenStack?
- Amazon Web Services

Red Hat Enterprise Linux and CentOS

- https://confluence/display/SCSPub/CentOS+7+and+Chef
- Unless RHEL 7 is required by your application for support,
 CentOS 7 is preferred and recommended instead
- Where is CentOS 7 rolled out
 - Interactive login pool, rhel7.slac.stanford.edu
 - LSF test queue 'bsub –q rhel7 …'
 - LSST IR2, Zoox, OpenStack servers
 - Self service Openstack CentOS 7 VMs (eg, to use docker)
- Plans: reinstall RHEL5 infrastructure servers with CentOS 7
- RHEL5 End of Life, March 2017 (RHEL 6 EOL 2020)
- CentOS 7 desktop, ITDS portfolio of supported apps
 - standard portfolio of productivity apps like we have for Windows: mail client, web browser, ssh, office suite, etc.
 - CentOS 7 Desktops for personal productivity, not servers

Chef configuration management

- 32 CentOS 7 hosts under Chef config management
 - Most of those are test machines to verify Chef cookbooks
- Support contract with Chef: slack, office hours, etc.
- SLAC will be using Chef Automate for workflow.
 - Focus on standing Automate up and then use it to make and test configuration changes
 - Chef automate provides
 - prescriptive workflow (continuous deployment pipeline, git version control, automatically test all changes on full VMs
 - Visibility dashboards, reports
 - Compliance write compliance rules, view reports

FastX

- https://confluence.slac.stanford.edu/pages/ viewpage.action?pageId=205985167
- Display remote Linux applications (X Clients) on your desktop or laptop
- Can use any standard web browser
- Can use client application
- FastX is a cluster of VMs in VMware
 - As demand necessitates, more VMs will be added

OpenStack

- https://confluence.slac.stanford.edu/display/SCSPub/ Using+the+OpenStack+cluster+at+SLAC
- 23 Projects
- 29 deft LSF batch bare metal servers
 - 58 VMs
- 12 bare metal servers for self service laaS
 - 68 VMs
- Subnets available
 - SERV01-*, FARM04-*, FARM10-*
- 780 vCPUs, 4.3 TB Memory, 83.7 TB local disk

VMware on FARM network

- Science high bandwidth network (vs. SERV networks)
- VMware FARM clusters High Availability Row & non-HA
- To virtualize aging servers that are supporting science infrastructure (LSF, storage, etc.)
- Migrate Computing Division VMs on aging KVM infrastructure to FARM VMware (rhel6-64 and iris login pools)
 - VMware has built in lifecycle replacement via leasing
- Science groups no longer forced to buy dedicated KVM hypervisors for VM infrastructure
 - Many individual KVM hypervisors are more time consuming to manage without RHEV or oVirt
 - Better to put hypervisors under a management cluster for HA and increased utilization

Virtualization Technologies - where to run science VMs

Requirement	OpenStack	VMware
I need a VM to run a critical service that requires generator- backed power in the datacenter		√
I need to pick my own VM hostnames (with matching reverse DNS lookups)		\checkmark
My service runs on a single VM with no built-in redundancy or failover across multiple VMs (aka, legacy scale-up application)		√
I want to manage and change my VM configurations (vCPU, memory, storage, subnet, operating system)	\checkmark	
I need a cloud GUI/API to create and destroy VMs in order to scale out my application automatically or manually	\checkmark	
I want to install or reinstall my VM within minutes at will by myself	\checkmark	
I want to be given a quota of resources (vCPU, memory, disk) and be able to provision and delete my own cluster of VMs	\checkmark	
I want to take snapshots of my VM and manage those snapshot images myself, and revert back to a previous snapshot by myself	\checkmark	

Amazon Web Services

- NuSpective SLAC AWS account
- SCS SLAC research-only account
- Plans VPN
- LSF resource connector
- Testing amazon glacier for storage, seamless LSF bursting, other applications (web, etc)

Questions?

Storage & Data Management Scientific Computing Services

Lance Nakata, September 22, 2016

Storage Updates

- 16 T10000D 8TB tape drives scheduled to arrive next week. HPSS testing and deployment to begin in Q1FY17.
- 4 SSD-based servers have arrived for those tape drives.
- 3 SSD-based servers for AuriStor (AFS) service. Testing and deployment to begin in Q1FY17.

Storage Updates

- Begin testing Spectrum Scale 4.2.1. Upgrade GPFS 3.5 to Spectrum Scale by 4/30/2017. As always, we will attempt to minimize disruption to your work.
- UNIX tape backups: will upgrade tsm1 app software and server hardware, plus switch from 1TB to 5TB tape drives.
- Reminder: StaaS chargeback begins 10/1/2016

End-Of-Life Storage Hardware

- End-Of-Life = No longer supported by vendor and/or dropping off the SCS roadmap. EOL hardware:
 - Sun Thumpers/Thors (e.g., "kans, wains")
 - NetApp filers (e.g., "surreys")
 - Solaris SPARC storage (e.g., "sulkys")
- Solaris 10 support will end 1/31/2018. Hardware phaseout will continue through 2017.
- GPFS/Spectrum Scale running on RHEL is the current supported storage platform.

End-Of-Life Storage Hardware

Science Area	Total Disk Hardware (TB)	Healthy Disk Hardware (TB)	EOL Disk Hardware (TB)
BaBar	2277	1307	970
Fermi	5534	2880	2654
EXO	304	120	184
KIPAC/DES	2612	1200	1412
LSST	46	0	46
CDMS	236	144	92
LCD	113	0	113
EPP Theory	44	36	8
MCC/EED	415	240	175

- ~5.5PB of EPP+PAC storage capacity on EOL hardware
- How do we migrate data off EOL hardware in 2017?

One Solution: Storage as a Service (StaaS)

- Improved performance via aggregated storage/parallel file system
- Higher availability via redundant servers
- Multi-PB acquisition = Lower cost per TB
- Automatic tiering to further reduce costs (we plan to gather access pattern statistics)
- Fast storage provisioning (1 day vs. weeks)
- OCIO can lease the hardware and manage lifecycle internally
- Upcoming StaaS upgrades:
 - SSDs for 1) metadata (faster file create/delete/ls) and 2) high IOPS storage pool
 - Expand NLSAS disk tier (~260TB out of 320TB allocated)
 - Add Clustered NFS nodes to better distribute the NFS load
 - (Separate) High Availability (HA) StaaS (in planning stages)

Storage as a Service About 261 TB allocated out of 320 TB total

StaaS Rates

- SSD, Disk, Tape differ in price and performance, but we need stable costs and a straightforward chargeback scheme
- Current StaaS pricing is \$100/TB/year for disk, based on an OCIO 5-year lease of 320TB increments
- We believe we can lease PBs of disk to lower StaaS cost per TB (bulk order; capacity config, not performance)
- One possible approach for tiered StaaS pricing options:
 - A. \$X / TB / year for data that can be migrated to tape
 - B. \$Y / TB / year for data that must stay on SSD/disk
- Consensus on retention periods helps reduce price points
 - Example: Groups agree that data not accessed in 6 months or 1 year can go to tape => two price points for option A

- SCS will investigate a multi-PB expansion for StaaS that will combine SSD, disk and tape to address the EOL disk storage for PAC, EPP and other groups while maintaining reasonable performance levels
- Chargeback would reflect tape vs. no-tape storage tiering option
- Ideal: a multi-year commitment from groups to cover the storage lease costs. SCS is also a StaaS customer.
- We are your non-profit computing partner and want a winwin solution, so please share your ideas and feedback!

Storage & Data Management

SLAC

Questions?

Cloud Compute Scientific Computing Services

Yemi Adesanya, September 22, 2016

HPC in the Cloud

SLAC

A quote from a Cray exec. at SC15 conference:

"The future of HPC is partly cloudy"

Cloud will not replace our entire datacenter (today)

- Why Cloud?
 - Scalability and flexibility
 - Use it when you need it for bursty workloads
- Contributing factors for SLAC cloud services
 - Underutilized static, bare-metal compute clusters
 - Shared clusters averaging 87% ✓
 - Private clusters may be as low as 5% ¥
 - Funding agencies may question requests for hardware purchases
 - "Can the researcher use DOE compute center, NERSC, AWS, etc."

Seamless Cloud

- SLAC compute is largely high-throughput, data-intensive
- Compute Models traditionally designed for batch job submission, not for cloud infrastructure
- Let's leverage cloud resources through the existing LSF job scheduler
- LSF Resource Connector = API for interfacing LSF cluster with an external resource provider
 - OpenStack Resource Connector
 - AWS Resource Connector
- Job queues can be configured to burst into OpenStack or AWS when baremetal clusters are busy
- We are not replicating SLAC data in the cloud (for now...)

Seamless Cloud

- Seamless Cloud bursting with LSF OpenStack resource connector is working as advertised, AWS is next
 - Opens up possibilities for 'express cloud' job queues why wait for bullets/hequs/etc. to become idle?
 - OpenStack hosts are local no performance penalty when accessing SLAC filesystems
 - AWS instances will run on a VPN with limited bandwidth consider setting up a proxy storage service in the cloud (ATLAS)
- Docker container support with LSF is coming
 - Docker supported in RHEL7
 - Try encapsulating your runtime environment in a portable Docker image

Funding Model for Cloud

- Introduce Cloud Compute-as-a-Service in FY18
- An alternative to groups buying baremetal compute hardware
- Leverage OpenStack, AWS, VMware
- Try out the service before you commit funds
- We need a straightforward chargeback model:
 - Chargeback per-group or per-project, not per individual
 - Offer a select number of service tiers or bundles
 - Quota based, not actual utilization minutes
- Any new service funding model will have to be reviewed with senior management and business managers

Cloud Compute

SLAC

Questions?