
Nanocubes for Real-Time Exploration of Spatiotemporal Datasets

Lauro Lins James T. Klosowski Carlos Scheidegger

Fig. 1. Example visualizations of 210 million public geolocated Twitter posts over the course of a year. The data structure we
propose enables real-time (these images above were rendered faster than the typical screen refresh rate) visual exploration of large,
spatiotemporal, multidimensional datasets. The visual encodings built using nanocubes are within a controllable difference to ones
rendered by a traditional linear scan over the dataset. They naturally support linked navigation and brushing, and include choropleth
maps, time series over arbitrary regions and scales of space and time, parallel sets, histograms, and binned scatterplots. The
color scale of the choropleth map is a diverging scale in which blue corresponds to iPhones being relatively more popular, and red
corresponds to higher relative popularity of Android devices.

Abstract—Consider real-time exploration of large multidimensional spatiotemporal datasets with billions of entries, each defined by
a location, a time, and other attributes. Are certain attributes correlated spatially or temporally? Are there trends or outliers in the
data? Answering these questions requires aggregation over arbitrary regions of the domain and attributes of the data. Data cubes
are a well-known aggregration operation in relational databases. In a sense, they precompute every possible aggregate query over
the database. Data cubes are sometimes assumed to take a prohibitively large amount of space, and to consequently require disk
storage. In contrast, we show how to construct a data cube that fits in a modern laptop’s main memory, even for billions of entries;
we call this data structure a nanocube. We present algorithms to compute and query a nanocube, and show how it can be used
to generate well-known visual encodings such as heatmaps, histograms, and parallel coordinate plots. When compared to exact
visualizations created by scanning an entire dataset, nanocube plots have bounded screen error across a variety of scales, thanks
to a hierarchical structure in space and time. We demonstrate the effectiveness of our technique on a variety of real-world datasets,
and present memory, timing, and network bandwidth measurements. We find that the timings for the queries in our examples are
dominated by network and user-interaction latencies.

Index Terms—Data Cube, Data Structures, Interactive Exploration

1 INTRODUCTION

As datasets get larger, real-time visualization becomes more difficult.
Consider a dataset with a billion entries. If we compute a summary
of the dataset and visualize it, the natural question becomes “does the
summary represent the data well?” and the problem has simply shifted
to “how can we visualize one billion residuals”? Even drawing the
simplest scatterplot is not straightforward. If we decide to produce
the visualization by scanning the rows of a table, we will either need
non-trivial parallel rendering algorithms or significant time to produce
a drawing. Neither of these solutions scales well with dataset size.

• Authors are with AT&T Research, Florham Park, NJ; {llins, jklosow,
cscheid}@research.att.com.

Manuscript received 31 March 2013; accepted 1 August 2013; posted online
13 October 2013; mailed on 27 September 2013.
For information on obtaining reprints of this article, please send
e-mail to: tvcg@computer.org.

Data cubes are structures that perform aggregations across every
possible set of dimensions of a table in a database, to support quick ex-
ploration [14, 30]. Many visualization systems are built on top of data
cubes, concretely or conceptually. Still, only recently have researchers
started to examine data cube creation algorithms in the context of in-
formation visualization [32, 17, 20].

Data cubes are often problematic in that they can take prohibitively
large amounts of memory as the number of dimensions increases. In
Section 4, we show how to construct a data cube that fits in the main
memory of a modern laptop computer or workstation, extending the
work of Sismanis et al. [30]. In addition, the query times to build the
visual encodings in which we are interested will be at most propor-
tional to the size of the output, which is bounded by the number of
screen pixels (within a small factor). This is an important observa-
tion: the time complexity of a visualization algorithm should ideally
be bounded the number of pixels it touches on the screen. Our tech-
nique enables real-time exploratory visualization on datasets that are
large, spatiotemporal, and multidimensional. Because the speed of

00,11 01,11 10,11 11,11

00,10 01,10 10,10 11,10

00,01 01,01 10,01 11,01

00,00 01,00 10,00 11,00

o1

o2

o3

o4

o5

0,1 1,1

0,0 1,0

Five Tweets: Location and Device

= iPhone
= Android`device()

`device()

`spatial1 `spatial2

S = [[`spatial1, `spatial2], [`device]]

o2

o2o1

o2 o3

0,1

01,10

Android

o1

iPhone

1,0

10,01

o3

iPhone

o2o1 o3

iPhone Android

10,10

Android

o4

1,1

o1 o4

o4

11,01

iPhone

o5

iPhone

o5o3

0,1

01,10

Android

o1

0,1

01,10

Android

o1 o2 o2o1

iPhone

0,1

01,10

Android

o1 o2 o2o1

iPhone

1,0

10,01

o3

iPhone

o2o1 o3

iPhone
Android

o2 o3

0,1

01,10

Android

o1 o2 o2o1

iPhone

1,0

10,01

o3

iPhone

o2o1 o3

iPhone Android

o2 o3

10,10

Android

o4

1,1

o1 o4

o4

Indexing Schema

1. 2. 3.

4. 5.

parent-child (same dimension):

proper

content (next dimension):

shared

proper shared

o5

o5

updated in
current step

dimension
boundary

Fig. 2. An illustration of how to build a nanocube for five points [o1, . . . ,o5] under schema S. The complete process is described in Section 4.

our data cube structure hinges partly on it being small enough to fit in
main memory, we call them nanocubes.

By real-time, we mean extremely fast queries: query times average
under a millisecond for a single thread running on a computer that
ranges from a laptop, to a workstation, to a server-class computing
node (Section 6). By large, we mean that the datasets we support have
millions to billions of entries.

By spatiotemporal, we mean that nanocubes support queries typ-
ical of spatial databases, such as counting events in a spatial re-
gion that can be either a rectangle covering most of the world, or
a heatmap of activity in downtown San Francisco (Section 4.3.1).
By the same token, nanocubes support temporal queries at multiple
scales, such as event counts by hour, day, week, or month over a pe-
riod of years (Section 4.3.3). Data cubes in general enable the Visual
Information-Seeking Mantra [28] of “Overview first, zoom and fil-
ter, then details-on-demand” by providing rollup summaries over all
projections and letting users drill down by expanding the wanted di-
mensions. Nanocubes also provide overviews, filters, zooming, and
details-on-demand inside the spatiotemporal dimensions themselves.

By multidimensional, we mean that besides latitude, longitude, and
time, each entry can have additional attributes (see section 6) that can
be used in query selections and rollups.

As we will show, nanocubes support queries that lend themselves
very well to building visual encodings which are fundamental build-
ing blocks of interactive visualization systems, such as scatterplots,
histograms, parallel coordinate plots, and choropleth maps. In sum-
mary, we contribute:

• a novel data structure that improves on the current state of the art
data cube technology to enable real-time exploratory visualiza-
tion of multidimensional, spatiotemporal datasets;

• algorithms to query the nanocube and build linked and brushable
visual encodings commonly found in visualization systems; and

• case studies highlighting the strengths and weaknesses of our
technique, together with experiments to measure its utilization
of space, time, and network bandwidth.

2 RELATED WORK

Relational databases are so widespread and fundamental to the prac-
tice of computing that they were a natural target for information visual-
ization almost since the field’s inception [19]. Mackinlay’s Automatic

Presentation Tool is the breakthrough result that critically connected
the relational structure of the data with the graphical primitives avail-
able for display [22] and ultimately lead to data cube visualization
tools like Polaris [33, 34] and Show Me [23]. Nanocubes are specifi-
cally designed to speed up queries for spatiotemporal data cubes, and
could eventually be used as a backend for these types of applications.

In contrast, some of the work in large data visualization involves
shipping the computation and data to a cluster of processing nodes.
While parallelism is an attractive option for increasing throughput, it
does not necessarily help achieve low latency, which is essential for
fluid interactions with a visualization tool. As a result, sophisticated
techniques such as query prediction become necessary [5]. Leverag-
ing the enormous power of graphics processing units has also become
popular [24, 20], but without algorithmic changes, linear scans through
the dataset will still be too slow for fluid interaction, even with GPUs.

Another popular way to cope with large datasets is through sam-
pling. Statistical sampling can be performed on the database back-
end [25, 1, 9, 13], or on the front-end [10]. Still, the techniques we
introduce with nanocubes can produce results quickly and exactly (to
within screen precision) without requiring approximations, which we
believe is preferable. In addition, as Liu et al. argue, sampling by it-
self is not sufficient to prevent overplotting, and might actually mask
important data outliers [20].

Fekete and Plaisant have proposed modifications of traditional vi-
sual encodings which use the computer screen more efficiently, and
so scale better with dataset size [12]. Still, the proposal requires a
traversal of all input data points, which is not a feasible approach at
the scale which we want to approach here. Carr et al. were among the
first to propose techniques replacing a scatterplot with an equivalent
density plot [4]; nanocubes can be seen as a data structure to enable
these visualizations at a variety of dataset sizes and scales.

Careful data aggregation [16], then, appears to be one of the few
scalable solutions for low-latency large data graphics. While Elmqvist
and Fekete propose variations of visualization techniques that include
aggregation as a first-class citizen [11], in this paper we show how to
issue queries such that at the screen resolution in which the application
is operating, the result is indistinguishable (or close to) from a com-
plete scan through the dataset. We note that over-aggressive aggrega-
tion itself introduces potential discrepancies between the visualization
and the dataset, and there are proposals to understand this [8].

We are interested in bounding the difference between our visual en-
coding and a visual encoding that would traverse the entirety of the
data by the size of the screen, i.e. the number of pixels in it. Related to

1: function NANOCUBE([o1,o2, . . . ,on], S, `time) . n > 0
2: nano cube← NODE() . New empty node
3: for i = 1 to n do
4: updated nodes← /0
5: ADD(nano cube, oi, 1, S, `time, updated nodes)
6: end for
7: return nano cube
8: end function

1: function TRAILPROPERPATH(root, [v1, . . . ,vk])
2: stack← STACK() . New Empty Stack
3: PUSH(stack, root)
4: node← root
5: for i = 1 to k do
6: child← CHILD(node, vi)
7: if child = null then
8: child← NEWPROPERCHILD(node, vi, NODE())
9: else if ISSHAREDCHILD(node,child) then

10: child← REPLACECHILD(node,
child, SHALLOWCOPY(child))

11: end if
12: PUSH(stack, child)
13: node← child
14: end for
15: return stack
16: end function

1: function SHALLOWCOPY(node)
2: node sc← NODE()
3: SETSHAREDCONTENT(node sc, CONTENT(node))
4: for v in CHILDRENLABELS(node) do
5: NEWSHAREDCHILD(node sc, v, CHILD(node, v))
6: end for
7: return node sc
8: end function

1: procedure ADD(root, o, d, S, `time, updated nodes)
2: [`1, . . . , `k]← CHAIN(S, d)
3: stack← TRAILPROPERPATH(root, [`1(o), . . . , `k(o)])
4: child← null
5: while stack is not empty do
6: node← POP(stack)
7: update← false
8: if node has a single child then
9: SETSHAREDCONTENT(node, CONTENT(child))

10: else if CONTENT(node) is null then
11: SETPROPERCONTENT(node,

(d= dim(S) ?
SUMMEDTABLETIMESERIES() : NODE())

12: update← true
13: else if CONTENTISSHARED(node) and

CONTENT(node) not in updated nodes then
14: SETPROPERCONTENT(node,

SHALLOWCOPY(CONTENT(node)))
15: update← true
16: else if CONTENTISPROPER(node) then
17: update← true
18: end if
19: if update then
20: if d= dim(S) then
21: INSERT(CONTENT(node), `time (o))
22: else
23: ADD(CONTENT(node), o, d+1, updated nodes)
24: end if
25: INSERT(updated nodes, CONTENT(node))
26: end if
27: child← node
28: end while
29: end procedure

Fig. 3. Pseudo-code of an algorithm to build nanocubes.

this, pixel-oriented techniques [18] have been investigated. However,
these tend to focus on the development of new visual encodings, while
in this paper we show how to create the already well-known and estab-
lished encodings with low error, high performance and interactivity.

Our technique is most closely related to the work of Sismanis et
al. [29, 30, 31]. Nanocubes improve upon their work in two funda-
mental directions. First, we develop a model for spatiotemporal data
cubes that exploits unique characteristics of space and time to get a
good compromise between space usage and efficiency of queries (Sec-
tions 4.2.1 and 6). Second, we show how these structures enable the
visualizations which are common in interactive tools (Section 4.3).

There have been recent efforts to build data cube structures specif-
ically suited for visualization. Crossfilter [32] is based on the clever
observation that many queries in interactive visualization are incre-
mental: assuming that previous results are available, the results needed
for the next query can be quickly computed. Unfortunately, we do not
see how this would work for the multiscale queries necessary in a spa-
tiotemporal setting. Just as recently, Kandel et al. proposed Datavore,
a column-oriented database that supports fast data cube queries [17],
and Liu et al. leverage graphics hardware in imMens, achieving ex-
tremely fast queries over large data [20]. We defer direct comparison
of nanocubes to Datavore and imMens until Section 7.

3 DATA CUBES

Following common practice, we will call the table in Figure 4 a rela-
tion, its columns attributes, its lines records, and its entries values. An
aggregation represents the idea of selecting a certain group of records
from a relation and summarizing this group using an aggregation func-
tion (e.g. count, sum, max, min). For example, a possible aggrega-
tion for the relation A could be to select all its records and summarize
those using count, yielding five as the aggregation result. If we allow

a special value All to be a valid attribute value, we could represent this
aggregation as relation B in Figure 4. A record that contains the spe-
cial value All is an aggregation record. Using this notation, it is easy
to understand some conventional ways of describing aggregations for
a given relation: GROUP BY, CUBE, and ROLL UP.

A GROUP BY operation is one in which a relation is derived from
a base relation given a list of attributes and an aggregation function.
For example, GROUP BY on attributes Device and Language with the
count aggregation function results in the relation C in Figure 4. Note
that for every different combination of values present in the attributes
of a base relation, an aggregation record is added to the resulting re-
lation. In our running example, these combinations are (Android, en),
(iPhone, en), and (iPhone, ru).

Online Submission ID: 276

1: function NANOCUBE([o1,o2, . . . ,on], S, `time) . n > 0
2: nano cube NODE() . New empty node
3: for i = 1 to n do
4: updated nodes /0
5: ADD(nano cube, oi, 1, S, `time, updated nodes)
6: end for
7: return nano cube
8: end function

1: function TRAILPROPERPATH(root, [v1, . . . ,vk])
2: stack STACK() . New Empty Stack
3: PUSH(stack, root)
4: node root
5: for i = 1 to k do
6: child CHILD(node, vi)
7: if child = null then
8: child NEWPROPERCHILD(node, vi, NODE())
9: else if ISSHAREDCHILD(node,child) then

10: child REPLACECHILD(node,
child, SHALLOWCOPY(child))

11: end if
12: PUSH(stack, child)
13: node child
14: end for
15: return stack
16: end function

1: function SHALLOWCOPY(node)
2: node sc NODE()
3: SETSHAREDCONTENT(node sc, CONTENT(node))
4: for v in CHILDRENLABELS(node) do
5: NEWSHAREDCHILD(node sc, v, CHILD(node, v))
6: end for
7: return node sc
8: end function

1: procedure ADD(root, o, d, S, `time, updated nodes)
2: [`1, . . . ,`k] CHAIN(S, d)
3: stack TRAILPROPERPATH(root, [`1(o), . . . ,`k(o)])
4: child null
5: while stack is not empty do
6: node POP(stack)
7: update false
8: if node has a single child then
9: SETSHAREDCONTENT(node, CONTENT(child))

10: else if CONTENT(node) is null then
11: SETPROPERCONTENT(node,

(d= dim(S) ?
SUMMEDTABLETIMESERIES() : NODE())

12: update true
13: else if CONTENTISSHARED(node) and

CONTENT(node) not in updated nodes then
14: SETPROPERCONTENT(node,

SHALLOWCOPY(CONTENT(node)))
15: update true
16: else if CONTENTISPROPER(node) then
17: update true
18: end if
19: if update then
20: if d= dim(S) then
21: INSERT(CONTENT(node), `time(o))
22: else
23: ADD(CONTENT(node), o, d+1, updated nodes)
24: end if
25: INSERT(updated nodes, CONTENT(node))
26: end if
27: child node
28: end while
29: end procedure

Fig. 3. Pseudo-code of an algorithm to build nanocubes.

exploits unique characteristics of space and time to get a good com-
promise between space usage and efficiency of queries (Sections 4.2.1
and 6). Second, we show how these structures enable the visualiza-
tions which are common in interactive tools (Section 4.3).

There have been recent efforts to build data cube structures specif-
ically suited for visualization. Crossfilter [32] is a software package
built on the clever observation that many queries in interactive visual-
ization are incremental: assuming that previous results are available,
the results needed for the next query can be quickly computed. Unfor-
tunately, we do not see easily how this would work for the multiscale
queries necessary in a spatiotemporal setting. Just as recently, Kandel
et al. have proposed Datavore, a column-oriented database support fast
data cube queries [17], and Liu et al. leverage graphics hardware in iM-
mens, achieving extremely fast queries over large data [20]. While we
defer to Section 7 a full discussion and direct comparison of nanocubes
to Datavore and iMmens, we show in Figure 14 that nanocubes achieve
good performance for both sparse (the regime where Datavore’s data
structures are ideal) and dense occupation of key space (where iM-
mens’s are).

3 DATA CUBES

Following common practice, we will call the table in Figure 5 a rela-
tion, its columns attributes, its lines records, and its entries values. An
aggregation represents the idea of selecting a certain group of records
from a relation and summarizing this group using an aggregation func-
tion (e.g. count, sum, max, min). For example, a possible aggrega-
tion for the relation A could be to select all its records and summarize
those using count, yielding five as the aggregation result. If we al-
low a special value All to be a valid attribute value, we could represent
this aggregation as relation B in Figure 5.

A record that contains the special value All is an aggregation record.

Using this notation, it is easy to understand some conventional ways
of describing aggregations for a given relation: group by, cube, and
rollup. A group by operation is one in which a relation is derived from
a base relation given a list of attributes and an aggregate function. For
example, group by on attributes Device and Language with the count
aggregate function results in the relation C in Figure 5.

Note that for every different combination of values present in the
attributes of a base relation an aggregation record is added to the re-
sulting relation. In our running example (Figure 5) these combinations
are (Android, en), (iPhone, en), and (iPhone, ru). The cube operation

Online Submission ID: 276

1: function NANOCUBE([o1,o2, . . . ,on], S, `time) . n > 0
2: nano cube NODE() . New empty node
3: for i = 1 to n do
4: updated nodes /0
5: ADD(nano cube, oi, 1, S, `time, updated nodes)
6: end for
7: return nano cube
8: end function

1: function TRAILPROPERPATH(root, [v1, . . . ,vk])
2: stack STACK() . New Empty Stack
3: PUSH(stack, root)
4: node root
5: for i = 1 to k do
6: child CHILD(node, vi)
7: if child = null then
8: child NEWPROPERCHILD(node, vi, NODE())
9: else if ISSHAREDCHILD(node,child) then

10: child REPLACECHILD(node,
child, SHALLOWCOPY(child))

11: end if
12: PUSH(stack, child)
13: node child
14: end for
15: return stack
16: end function

1: function SHALLOWCOPY(node)
2: node sc NODE()
3: SETSHAREDCONTENT(node sc, CONTENT(node))
4: for v in CHILDRENLABELS(node) do
5: NEWSHAREDCHILD(node sc, v, CHILD(node, v))
6: end for
7: return node sc
8: end function

1: procedure ADD(root, o, d, S, `time, updated nodes)
2: [`1, . . . ,`k] CHAIN(S, d)
3: stack TRAILPROPERPATH(root, [`1(o), . . . ,`k(o)])
4: child null
5: while stack is not empty do
6: node POP(stack)
7: update false
8: if node has a single child then
9: SETSHAREDCONTENT(node, CONTENT(child))

10: else if CONTENT(node) is null then
11: SETPROPERCONTENT(node,

(d= dim(S) ?
SUMMEDTABLETIMESERIES() : NODE())

12: update true
13: else if CONTENTISSHARED(node) and

CONTENT(node) not in updated nodes then
14: SETPROPERCONTENT(node,

SHALLOWCOPY(CONTENT(node)))
15: update true
16: else if CONTENTISPROPER(node) then
17: update true
18: end if
19: if update then
20: if d= dim(S) then
21: INSERT(CONTENT(node), `time(o))
22: else
23: ADD(CONTENT(node), o, d+1, updated nodes)
24: end if
25: INSERT(updated nodes, CONTENT(node))
26: end if
27: child node
28: end while
29: end procedure

Fig. 3. Pseudo-code of an algorithm to build nanocubes.

Our technique is most closely related to the work of Sismanis et
al. [30, 29]. Specifically, we use similar ideas to reduce the size of
a data cube from potentially exponential in the cardinality of the key
space (we define these terms in Section 4.1) to essentially linear [31].
Nanocubes improve on Sismanis et al.’s work in two fundamental di-
rections. First, we develop a model for spatiotemporal data cubes that
exploits unique characteristics of space and time to get a good com-
promise between space usage and efficiency of queries (Sections 4.2.1
and 6). Second, we show how these structures enable the visualiza-
tions which are common in interactive tools (Section 4.3).

There have also been recent efforts to build data cube structures
specifically suited for visualization. Crossfilter [32] is a software pack-
age built on the clever observation that many queries in interactive vi-
sualization are incremental: assuming that previous results are avail-
able, the results needed for the next query can be quickly computed.
Unfortunately, we do not see easily how this would work for the multi-
scale queries necessary in a spatiotemporal setting. Just as recently,
Kandel et al. have proposed Datavore, a column-oriented data cube
representation [17], and Liu et al. leverage graphics hardware in iM-
mens, achieving extremely fast queries over large data [20]. While we
defer to Section 7 a full discussion and direct comparison of nanocubes
to Datavore and iMmens, we show in Figure 13 that nanocubes achieve
good performance for both sparse (the regime where Datavore’s data
structures are ideal) and dense occupation of key space (where iM-
mens’s are).

3 DATA CUBES

In the relational databases community, the table below is a relation, its
columns are attributes, its lines are records, and its entries are values.

Country Device Language
US Android en
US iPhone ru

South Africa iPhone en
India Android en

Australia iPhone en

An aggregation represents the idea of selecting a certain group of
records from a relation and summarizing this group using an aggrega-
tion function (e.g.count, sum, max, min). For example, a possible
aggregation for the relation above could be to select all its records and
summarize those using count. In this case, five would be the final
aggregation result. If we allow entries in the record to have a special
value All, we could represent this aggreation as the following relation:

Country Device Language Count
All All All 5

We refer to records in a relation that contain the special value All as ag-
gregation records. Using this notation, it is easy to understand the con-
ventional ways of describing aggregations for a given relation: group
by, cube, and rollup. A group by operation is one in which a relation is
derived from a base relation given a list of attributes and an aggregate
function. For example, group by on attributes Device and Language
with the count aggregate function results in the relation:

Country Device Language Count
All Android en 2
All iPhone en 2
All iPhone ru 1

Note that for every different combination of values present in the at-
tributes of the base relation an aggregation record is added to the re-

3

Online Submission ID: 276

1: function NANOCUBE([o1,o2, . . . ,on], S, `time) . n > 0
2: nano cube NODE() . New empty node
3: for i = 1 to n do
4: updated nodes /0
5: ADD(nano cube, oi, 1, S, `time, updated nodes)
6: end for
7: return nano cube
8: end function

1: function TRAILPROPERPATH(root, [v1, . . . ,vk])
2: stack STACK() . New Empty Stack
3: PUSH(stack, root)
4: node root
5: for i = 1 to k do
6: child CHILD(node, vi)
7: if child = null then
8: child NEWPROPERCHILD(node, vi, NODE())
9: else if ISSHAREDCHILD(node,child) then

10: child REPLACECHILD(node,
child, SHALLOWCOPY(child))

11: end if
12: PUSH(stack, child)
13: node child
14: end for
15: return stack
16: end function

1: function SHALLOWCOPY(node)
2: node sc NODE()
3: SETSHAREDCONTENT(node sc, CONTENT(node))
4: for v in CHILDRENLABELS(node) do
5: NEWSHAREDCHILD(node sc, v, CHILD(node, v))
6: end for
7: return node sc
8: end function

1: procedure ADD(root, o, d, S, `time, updated nodes)
2: [`1, . . . ,`k] CHAIN(S, d)
3: stack TRAILPROPERPATH(root, [`1(o), . . . ,`k(o)])
4: child null
5: while stack is not empty do
6: node POP(stack)
7: update false
8: if node has a single child then
9: SETSHAREDCONTENT(node, CONTENT(child))

10: else if CONTENT(node) is null then
11: SETPROPERCONTENT(node,

(d= dim(S) ?
SUMMEDTABLETIMESERIES() : NODE())

12: update true
13: else if CONTENTISSHARED(node) and

CONTENT(node) not in updated nodes then
14: SETPROPERCONTENT(node,

SHALLOWCOPY(CONTENT(node)))
15: update true
16: else if CONTENTISPROPER(node) then
17: update true
18: end if
19: if update then
20: if d= dim(S) then
21: INSERT(CONTENT(node), `time(o))
22: else
23: ADD(CONTENT(node), o, d+1, updated nodes)
24: end if
25: INSERT(updated nodes, CONTENT(node))
26: end if
27: child node
28: end while
29: end procedure

Fig. 3. Pseudo-code of an algorithm to build nanocubes.

Our technique is most closely related to the work of Sismanis et
al. [30, 29]. Specifically, we use similar ideas to reduce the size of
a data cube from potentially exponential in the cardinality of the key
space (we define these terms in Section 4.1) to essentially linear [31].
Nanocubes improve on Sismanis et al.’s work in two fundamental di-
rections. First, we develop a model for spatiotemporal data cubes that
exploits unique characteristics of space and time to get a good com-
promise between space usage and efficiency of queries (Sections 4.2.1
and 6). Second, we show how these structures enable the visualiza-
tions which are common in interactive tools (Section 4.3).

There have also been recent efforts to build data cube structures
specifically suited for visualization. Crossfilter [32] is a software pack-
age built on the clever observation that many queries in interactive vi-
sualization are incremental: assuming that previous results are avail-
able, the results needed for the next query can be quickly computed.
Unfortunately, we do not see easily how this would work for the multi-
scale queries necessary in a spatiotemporal setting. Just as recently,
Kandel et al. have proposed Datavore, a column-oriented data cube
representation [17], and Liu et al. leverage graphics hardware in iM-
mens, achieving extremely fast queries over large data [20]. While we
defer to Section 7 a full discussion and direct comparison of nanocubes
to Datavore and iMmens, we show in Figure 13 that nanocubes achieve
good performance for both sparse (the regime where Datavore’s data
structures are ideal) and dense occupation of key space (where iM-
mens’s are).

3 DATA CUBES

In the relational databases community, the table below is a relation, its
columns are attributes, its lines are records, and its entries are values.

Country Device Language
US Android en
US iPhone ru

South Africa iPhone en
India Android en

Australia iPhone en

An aggregation represents the idea of selecting a certain group of
records from a relation and summarizing this group using an aggrega-
tion function (e.g.count, sum, max, min). For example, a possible
aggregation for the relation above could be to select all its records and
summarize those using count. In this case, five would be the final
aggregation result. If we allow entries in the record to have a special
value All, we could represent this aggreation as the following relation:

Country Device Language Count
All All All 5

We refer to records in a relation that contain the special value All as ag-
gregation records. Using this notation, it is easy to understand the con-
ventional ways of describing aggregations for a given relation: group
by, cube, and rollup. A group by operation is one in which a relation is
derived from a base relation given a list of attributes and an aggregate
function. For example, group by on attributes Device and Language
with the count aggregate function results in the relation:

Country Device Language Count
All Android en 2
All iPhone en 2
All iPhone ru 1

Note that for every different combination of values present in the at-
tributes of the base relation an aggregation record is added to the re-

3

Online Submission ID: 276

1: function NANOCUBE([o1,o2, . . . ,on], S, `time) . n > 0
2: nano cube NODE() . New empty node
3: for i = 1 to n do
4: updated nodes /0
5: ADD(nano cube, oi, 1, S, `time, updated nodes)
6: end for
7: return nano cube
8: end function

1: function TRAILPROPERPATH(root, [v1, . . . ,vk])
2: stack STACK() . New Empty Stack
3: PUSH(stack, root)
4: node root
5: for i = 1 to k do
6: child CHILD(node, vi)
7: if child = null then
8: child NEWPROPERCHILD(node, vi, NODE())
9: else if ISSHAREDCHILD(node,child) then

10: child REPLACECHILD(node,
child, SHALLOWCOPY(child))

11: end if
12: PUSH(stack, child)
13: node child
14: end for
15: return stack
16: end function

1: function SHALLOWCOPY(node)
2: node sc NODE()
3: SETSHAREDCONTENT(node sc, CONTENT(node))
4: for v in CHILDRENLABELS(node) do
5: NEWSHAREDCHILD(node sc, v, CHILD(node, v))
6: end for
7: return node sc
8: end function

1: procedure ADD(root, o, d, S, `time, updated nodes)
2: [`1, . . . ,`k] CHAIN(S, d)
3: stack TRAILPROPERPATH(root, [`1(o), . . . ,`k(o)])
4: child null
5: while stack is not empty do
6: node POP(stack)
7: update false
8: if node has a single child then
9: SETSHAREDCONTENT(node, CONTENT(child))

10: else if CONTENT(node) is null then
11: SETPROPERCONTENT(node,

(d= dim(S) ?
SUMMEDTABLETIMESERIES() : NODE())

12: update true
13: else if CONTENTISSHARED(node) and

CONTENT(node) not in updated nodes then
14: SETPROPERCONTENT(node,

SHALLOWCOPY(CONTENT(node)))
15: update true
16: else if CONTENTISPROPER(node) then
17: update true
18: end if
19: if update then
20: if d= dim(S) then
21: INSERT(CONTENT(node), `time(o))
22: else
23: ADD(CONTENT(node), o, d+1, updated nodes)
24: end if
25: INSERT(updated nodes, CONTENT(node))
26: end if
27: child node
28: end while
29: end procedure

Fig. 3. Pseudo-code of an algorithm to build nanocubes.

Our technique is most closely related to the work of Sismanis et
al. [30, 29]. Specifically, we use similar ideas to reduce the size of
a data cube from potentially exponential in the cardinality of the key
space (we define these terms in Section 4.1) to essentially linear [31].
Nanocubes improve on Sismanis et al.’s work in two fundamental di-
rections. First, we develop a model for spatiotemporal data cubes that
exploits unique characteristics of space and time to get a good com-
promise between space usage and efficiency of queries (Sections 4.2.1
and 6). Second, we show how these structures enable the visualiza-
tions which are common in interactive tools (Section 4.3).

There have also been recent efforts to build data cube structures
specifically suited for visualization. Crossfilter [32] is a software pack-
age built on the clever observation that many queries in interactive vi-
sualization are incremental: assuming that previous results are avail-
able, the results needed for the next query can be quickly computed.
Unfortunately, we do not see easily how this would work for the multi-
scale queries necessary in a spatiotemporal setting. Just as recently,
Kandel et al. have proposed Datavore, a column-oriented data cube
representation [17], and Liu et al. leverage graphics hardware in iM-
mens, achieving extremely fast queries over large data [20]. While we
defer to Section 7 a full discussion and direct comparison of nanocubes
to Datavore and iMmens, we show in Figure 13 that nanocubes achieve
good performance for both sparse (the regime where Datavore’s data
structures are ideal) and dense occupation of key space (where iM-
mens’s are).

3 DATA CUBES

In the relational databases community, the table below is a relation, its
columns are attributes, its lines are records, and its entries are values.

Country Device Language
US Android en
US iPhone ru

South Africa iPhone en
India Android en

Australia iPhone en

An aggregation represents the idea of selecting a certain group of
records from a relation and summarizing this group using an aggrega-
tion function (e.g.count, sum, max, min). For example, a possible
aggregation for the relation above could be to select all its records and
summarize those using count. In this case, five would be the final
aggregation result. If we allow entries in the record to have a special
value All, we could represent this aggreation as the following relation:

Country Device Language Count
All All All 5

We refer to records in a relation that contain the special value All as ag-
gregation records. Using this notation, it is easy to understand the con-
ventional ways of describing aggregations for a given relation: group
by, cube, and rollup. A group by operation is one in which a relation is
derived from a base relation given a list of attributes and an aggregate
function. For example, group by on attributes Device and Language
with the count aggregate function results in the relation:

Country Device Language Count
All Android en 2
All iPhone en 2
All iPhone ru 1

Note that for every different combination of values present in the at-
tributes of the base relation an aggregation record is added to the re-

3

Natural language query s c t URL
count of all Delta flights R U R { Delta } R U /where/carrier=Delta
count of all Delta flights in the Midwest R (Midwest) R { Delta } R U /region/(Midwest)/where/carrier=Delta
count of early flights in 2010 R U D R (2010) /field/carrier/when/(2010)
time-series of all United flights in 2009 R U R U D (2009) /tseries/when/2009/where/carrier=United
heatmap of Delta flights in 2010 D (tile) R { Delta } R (2010) /tile/(tile)/where/carrier=Delta

Fig. 4. A simplified set of queries supported by the nanocube data structure. The column s represents space; t, time; c, category. R means “rollup”,
D means “drilldown”. The value next to R or D contains the subset of that dimension’s domain being selected. We use U to represent the entire
domain (“universe”). Omitted here, but supported by our structure, are: the extra parameter for number of steps throughout the time region in a
time-based drilldown; multiple categories with separate rollups and drilldowns; tiles of variable resolution.

sulting relation. In our running example these combinations are (An-
droid, en), (iPhone, en), and (iPhone, ru). The cube operation is the
result of collecting all possible group by aggregations into a single re-
lation for a given list of attributes. In our running example, the cube
for count on Device and Language would be the same as the union
of four group by’s: on (1) no attributes; on (2) Device only; on (3)
Language only; and (4) on Device and Language (2n group bys where
n is the number of input attributes):

Country Device Language Count
All All All 5
All Android All 2
All iPhone All 3
All All eu 4
All All ru 1
All iPhone ru 1
All Android en 2
All iPhone en 2
All iPhone ru 1

Finally, a roll up is a constrained version of the cube operation where
the order of the input attributes is important. So a roll up on Device
and Language (in this order) means the union of group by’s on: (1)
no attributes; (2) Device; and (3) Device and Language. Note that the
group by on Language only is not part of the roll up. As the results
of group by’s, cubes and roll ups can be seen as relations, we can
naturally compose such operations. As we will describe nanocubes is
a specialized data structure to store and query cubes of roll ups.

4 NANOCUBES: A COMPACT, SPATIOTEMPORAL ROLL-UP
CUBE

Data visualizations in a computer are necessarily bounded by display
size, and so we would like to be able to quickly collect subspaces of
the dataset that would end up in the same pixel on the screen. How-
ever, spatiotemporal navigation is inherently multiscale. The same
data structure should support quick indexing for a visualization over
multiple years of time series and for drilling down into one particu-
lar hour or day. Similarly, the data cube should support aggregation
queries over vast spatial regions covering entire continents, as well as
very narrow queries covering only a few city blocks.

The database notion of roll ups (Section 3), in a sense, aligns nicely
with the notion of Level of Detail. For example, if the records of a table
(relation) contain a location attribute, one can design a roll up query
whose resulting relation encodes the same information as the one en-
coded in a level of detail data structure. More concretely, suppose
`1, . . . ,`k are attributes computed from the original location attribute
and yield ’quad-tree addresses’ of increasingly higher levels of detail
(from 1 to k). A roll up query on these (computed) attributes results in,
essentially, the same information as the one contained in a quad-tree
(given that we are keeping the same summary in both, e.g.count). At
first, this connection might be obvious but bridges between terminolo-
gies from different areas is usually important. As it turns out, only later
in the development of nanocubes is that we became aware of Hierar-
chical Dwarf-Cubes [29], which is a highly related to nanocubes and
was developed by the database community to efficiently store results
of aggreagation queries.

The second important notion in the design of nanocubes is the idea
that we want to combine aggregations of independent dimensions at

independent levels of detail. For example we might want to know for
a whole country, what is the spatial distribution of tweets gererated
by an iPhone: coarse on the spatial dimension, but specific on the
device dimension; conversely we might want to know the distribu-
tion of tweets (coarse on device) in a small block of a city (fine in
space). In relational database terminology, this model has a name: it
is a cube of roll-ups, or a roll-up cube. Now with the language set up,
we can state: A nanocube is a data structure to efficiently store and
query spatio-temporal roll-up cubes. Besides implmentation tricks
(e.g. tagged pointers, carefully design of the bit layout of the struc-
tures, specifically designed to live in main memory), there is, to the
best of our knowledge, a qualitative difference in nanocubes to other
data structures like [29]. The difference is in what nanocubes store for
each aggregation which is deeply related to spatio-temporal datasets:
it stores time series in a sparse summed table format. This element of
nanocubes is explained in Section 4.3 and, cannot be cannot be effi-
ciently simulated (memory-wise) by previous datastructures.

In the remainder of this section, we present a formal description
of the components that make up our nanocube index, pseudo-code
for building nanocubes together with an illustrated example, and how
queries are made against our index.

4.1 Definitions

Let O be a set of objects. A labeling function ` : O! L associates a
label value to the objects of O. We can think of ` as an attribute in
a relational database. In connection with the level of detail discus-
sion above, if `1 and `2 are two labeling functions for O, we say `1 is
coarser than `2 or that `2 is finer than `1 if for any two objects o,o0 2O
the implication `2(o) = `2(o0)) `1(o) = `1(o0) holds. We denote this
fact by `1 < `2.

A sequence of labeling functions c = [`1,`, . . . ,`k] for objects O
is a chain for O if every labeling function is coarser than the next
labeling function in the sequence: `i < `i+1. Note how chains are
related to roll ups, we avoid the same name to not overload more the
term roll up. The number of levels of a chain is defined by levels(c) =
|c|+1. An indexing schema for objects O consists of a sequence of
chains S = [c1,c2, . . . ,cn]. The dimension of an indexing schema S
is the length of its sequence of chains and is denoted by dim(S). The
multiplicity of a schema S is the product of its chains’ number of levels:
µ(S) = ’n

i=1 levels(ci).
A full assignment for a sequence of labeling functions [`1,`2, . . . ,`k]

is a sequence of label values [v1,v2, . . . ,vk] where vi is a label value
under `i. Any prefix of a full assignment for a sequence of label-
ing functions, including the empty one, is referred to as a partial as-
signment. Note that an full assignment is also a patial assignment
since a sequence is also a prefix of itself. An address on a schema
is a sequence of partial assignments for its chains, more formally, if
S = [c1,c2, . . . ,cn] is an indexing schema, then a = [p1, p2, . . . , pn] is
an address of S if pi is a partial assignment for chain ci. The set of pos-
sible addresses of S is denoted by addr(S). and its size is referred to as
the Global Cardinality of S. The subset of addr(S) whose addresses
contain only full assignments is called the Key Cardinality of S. The
key Key Cardinality is exactely the number of the finest resoultion bins
a nanocube can store.

The addresses of an object o under indexing schema S, denoted by
addr(o,S) are all the addresses in addr(S) whose partial assignments

4

Relation

Aggregation

Group By on Device, Language

Cube on Device, Language

Equivalent to Group By on
all possible subsets of
{Device, Language}

A

B

C

D

Fig. 5. A sample relation and its associated aggregation operators.

3

A

B

C

Online Submission ID: 276

1: function NANOCUBE([o1,o2, . . . ,on], S, `time) . n > 0
2: nano cube NODE() . New empty node
3: for i = 1 to n do
4: updated nodes /0
5: ADD(nano cube, oi, 1, S, `time, updated nodes)
6: end for
7: return nano cube
8: end function

1: function TRAILPROPERPATH(root, [v1, . . . ,vk])
2: stack STACK() . New Empty Stack
3: PUSH(stack, root)
4: node root
5: for i = 1 to k do
6: child CHILD(node, vi)
7: if child = null then
8: child NEWPROPERCHILD(node, vi, NODE())
9: else if ISSHAREDCHILD(node,child) then

10: child REPLACECHILD(node,
child, SHALLOWCOPY(child))

11: end if
12: PUSH(stack, child)
13: node child
14: end for
15: return stack
16: end function

1: function SHALLOWCOPY(node)
2: node sc NODE()
3: SETSHAREDCONTENT(node sc, CONTENT(node))
4: for v in CHILDRENLABELS(node) do
5: NEWSHAREDCHILD(node sc, v, CHILD(node, v))
6: end for
7: return node sc
8: end function

1: procedure ADD(root, o, d, S, `time, updated nodes)
2: [`1, . . . ,`k] CHAIN(S, d)
3: stack TRAILPROPERPATH(root, [`1(o), . . . ,`k(o)])
4: child null
5: while stack is not empty do
6: node POP(stack)
7: update false
8: if node has a single child then
9: SETSHAREDCONTENT(node, CONTENT(child))

10: else if CONTENT(node) is null then
11: SETPROPERCONTENT(node,

(d= dim(S) ?
SUMMEDTABLETIMESERIES() : NODE())

12: update true
13: else if CONTENTISSHARED(node) and

CONTENT(node) not in updated nodes then
14: SETPROPERCONTENT(node,

SHALLOWCOPY(CONTENT(node)))
15: update true
16: else if CONTENTISPROPER(node) then
17: update true
18: end if
19: if update then
20: if d= dim(S) then
21: INSERT(CONTENT(node), `time(o))
22: else
23: ADD(CONTENT(node), o, d+1, updated nodes)
24: end if
25: INSERT(updated nodes, CONTENT(node))
26: end if
27: child node
28: end while
29: end procedure

Fig. 3. Pseudo-code of an algorithm to build nanocubes.

exploits unique characteristics of space and time to get a good com-
promise between space usage and efficiency of queries (Sections 4.2.1
and 6). Second, we show how these structures enable the visualiza-
tions which are common in interactive tools (Section 4.3).

There have been recent efforts to build data cube structures specif-
ically suited for visualization. Crossfilter [32] is a software package
built on the clever observation that many queries in interactive visual-
ization are incremental: assuming that previous results are available,
the results needed for the next query can be quickly computed. Unfor-
tunately, we do not see easily how this would work for the multiscale
queries necessary in a spatiotemporal setting. Just as recently, Kandel
et al. have proposed Datavore, a column-oriented database support fast
data cube queries [17], and Liu et al. leverage graphics hardware in iM-
mens, achieving extremely fast queries over large data [20]. While we
defer to Section 7 a full discussion and direct comparison of nanocubes
to Datavore and iMmens, we show in Figure 14 that nanocubes achieve
good performance for both sparse (the regime where Datavore’s data
structures are ideal) and dense occupation of key space (where iM-
mens’s are).

3 DATA CUBES

Following common practice, we will call the table in Figure 5 a rela-
tion, its columns attributes, its lines records, and its entries values. An
aggregation represents the idea of selecting a certain group of records
from a relation and summarizing this group using an aggregation func-
tion (e.g. count, sum, max, min). For example, a possible aggrega-
tion for the relation A could be to select all its records and summarize
those using count, yielding five as the aggregation result. If we al-
low a special value All to be a valid attribute value, we could represent
this aggregation as relation B in Figure 5.

A record that contains the special value All is an aggregation record.

Using this notation, it is easy to understand some conventional ways
of describing aggregations for a given relation: group by, cube, and
rollup. A group by operation is one in which a relation is derived from
a base relation given a list of attributes and an aggregate function. For
example, group by on attributes Device and Language with the count
aggregate function results in the relation C in Figure 5.

Note that for every different combination of values present in the
attributes of a base relation an aggregation record is added to the re-
sulting relation. In our running example (Figure 5) these combinations
are (Android, en), (iPhone, en), and (iPhone, ru). The cube operation

Online Submission ID: 276

1: function NANOCUBE([o1,o2, . . . ,on], S, `time) . n > 0
2: nano cube NODE() . New empty node
3: for i = 1 to n do
4: updated nodes /0
5: ADD(nano cube, oi, 1, S, `time, updated nodes)
6: end for
7: return nano cube
8: end function

1: function TRAILPROPERPATH(root, [v1, . . . ,vk])
2: stack STACK() . New Empty Stack
3: PUSH(stack, root)
4: node root
5: for i = 1 to k do
6: child CHILD(node, vi)
7: if child = null then
8: child NEWPROPERCHILD(node, vi, NODE())
9: else if ISSHAREDCHILD(node,child) then

10: child REPLACECHILD(node,
child, SHALLOWCOPY(child))

11: end if
12: PUSH(stack, child)
13: node child
14: end for
15: return stack
16: end function

1: function SHALLOWCOPY(node)
2: node sc NODE()
3: SETSHAREDCONTENT(node sc, CONTENT(node))
4: for v in CHILDRENLABELS(node) do
5: NEWSHAREDCHILD(node sc, v, CHILD(node, v))
6: end for
7: return node sc
8: end function

1: procedure ADD(root, o, d, S, `time, updated nodes)
2: [`1, . . . ,`k] CHAIN(S, d)
3: stack TRAILPROPERPATH(root, [`1(o), . . . ,`k(o)])
4: child null
5: while stack is not empty do
6: node POP(stack)
7: update false
8: if node has a single child then
9: SETSHAREDCONTENT(node, CONTENT(child))

10: else if CONTENT(node) is null then
11: SETPROPERCONTENT(node,

(d= dim(S) ?
SUMMEDTABLETIMESERIES() : NODE())

12: update true
13: else if CONTENTISSHARED(node) and

CONTENT(node) not in updated nodes then
14: SETPROPERCONTENT(node,

SHALLOWCOPY(CONTENT(node)))
15: update true
16: else if CONTENTISPROPER(node) then
17: update true
18: end if
19: if update then
20: if d= dim(S) then
21: INSERT(CONTENT(node), `time(o))
22: else
23: ADD(CONTENT(node), o, d+1, updated nodes)
24: end if
25: INSERT(updated nodes, CONTENT(node))
26: end if
27: child node
28: end while
29: end procedure

Fig. 3. Pseudo-code of an algorithm to build nanocubes.

Our technique is most closely related to the work of Sismanis et
al. [30, 29]. Specifically, we use similar ideas to reduce the size of
a data cube from potentially exponential in the cardinality of the key
space (we define these terms in Section 4.1) to essentially linear [31].
Nanocubes improve on Sismanis et al.’s work in two fundamental di-
rections. First, we develop a model for spatiotemporal data cubes that
exploits unique characteristics of space and time to get a good com-
promise between space usage and efficiency of queries (Sections 4.2.1
and 6). Second, we show how these structures enable the visualiza-
tions which are common in interactive tools (Section 4.3).

There have also been recent efforts to build data cube structures
specifically suited for visualization. Crossfilter [32] is a software pack-
age built on the clever observation that many queries in interactive vi-
sualization are incremental: assuming that previous results are avail-
able, the results needed for the next query can be quickly computed.
Unfortunately, we do not see easily how this would work for the multi-
scale queries necessary in a spatiotemporal setting. Just as recently,
Kandel et al. have proposed Datavore, a column-oriented data cube
representation [17], and Liu et al. leverage graphics hardware in iM-
mens, achieving extremely fast queries over large data [20]. While we
defer to Section 7 a full discussion and direct comparison of nanocubes
to Datavore and iMmens, we show in Figure 13 that nanocubes achieve
good performance for both sparse (the regime where Datavore’s data
structures are ideal) and dense occupation of key space (where iM-
mens’s are).

3 DATA CUBES

In the relational databases community, the table below is a relation, its
columns are attributes, its lines are records, and its entries are values.

Country Device Language
US Android en
US iPhone ru

South Africa iPhone en
India Android en

Australia iPhone en

An aggregation represents the idea of selecting a certain group of
records from a relation and summarizing this group using an aggrega-
tion function (e.g.count, sum, max, min). For example, a possible
aggregation for the relation above could be to select all its records and
summarize those using count. In this case, five would be the final
aggregation result. If we allow entries in the record to have a special
value All, we could represent this aggreation as the following relation:

Country Device Language Count
All All All 5

We refer to records in a relation that contain the special value All as ag-
gregation records. Using this notation, it is easy to understand the con-
ventional ways of describing aggregations for a given relation: group
by, cube, and rollup. A group by operation is one in which a relation is
derived from a base relation given a list of attributes and an aggregate
function. For example, group by on attributes Device and Language
with the count aggregate function results in the relation:

Country Device Language Count
All Android en 2
All iPhone en 2
All iPhone ru 1

Note that for every different combination of values present in the at-
tributes of the base relation an aggregation record is added to the re-

3

Online Submission ID: 276

1: function NANOCUBE([o1,o2, . . . ,on], S, `time) . n > 0
2: nano cube NODE() . New empty node
3: for i = 1 to n do
4: updated nodes /0
5: ADD(nano cube, oi, 1, S, `time, updated nodes)
6: end for
7: return nano cube
8: end function

1: function TRAILPROPERPATH(root, [v1, . . . ,vk])
2: stack STACK() . New Empty Stack
3: PUSH(stack, root)
4: node root
5: for i = 1 to k do
6: child CHILD(node, vi)
7: if child = null then
8: child NEWPROPERCHILD(node, vi, NODE())
9: else if ISSHAREDCHILD(node,child) then

10: child REPLACECHILD(node,
child, SHALLOWCOPY(child))

11: end if
12: PUSH(stack, child)
13: node child
14: end for
15: return stack
16: end function

1: function SHALLOWCOPY(node)
2: node sc NODE()
3: SETSHAREDCONTENT(node sc, CONTENT(node))
4: for v in CHILDRENLABELS(node) do
5: NEWSHAREDCHILD(node sc, v, CHILD(node, v))
6: end for
7: return node sc
8: end function

1: procedure ADD(root, o, d, S, `time, updated nodes)
2: [`1, . . . ,`k] CHAIN(S, d)
3: stack TRAILPROPERPATH(root, [`1(o), . . . ,`k(o)])
4: child null
5: while stack is not empty do
6: node POP(stack)
7: update false
8: if node has a single child then
9: SETSHAREDCONTENT(node, CONTENT(child))

10: else if CONTENT(node) is null then
11: SETPROPERCONTENT(node,

(d= dim(S) ?
SUMMEDTABLETIMESERIES() : NODE())

12: update true
13: else if CONTENTISSHARED(node) and

CONTENT(node) not in updated nodes then
14: SETPROPERCONTENT(node,

SHALLOWCOPY(CONTENT(node)))
15: update true
16: else if CONTENTISPROPER(node) then
17: update true
18: end if
19: if update then
20: if d= dim(S) then
21: INSERT(CONTENT(node), `time(o))
22: else
23: ADD(CONTENT(node), o, d+1, updated nodes)
24: end if
25: INSERT(updated nodes, CONTENT(node))
26: end if
27: child node
28: end while
29: end procedure

Fig. 3. Pseudo-code of an algorithm to build nanocubes.

Our technique is most closely related to the work of Sismanis et
al. [30, 29]. Specifically, we use similar ideas to reduce the size of
a data cube from potentially exponential in the cardinality of the key
space (we define these terms in Section 4.1) to essentially linear [31].
Nanocubes improve on Sismanis et al.’s work in two fundamental di-
rections. First, we develop a model for spatiotemporal data cubes that
exploits unique characteristics of space and time to get a good com-
promise between space usage and efficiency of queries (Sections 4.2.1
and 6). Second, we show how these structures enable the visualiza-
tions which are common in interactive tools (Section 4.3).

There have also been recent efforts to build data cube structures
specifically suited for visualization. Crossfilter [32] is a software pack-
age built on the clever observation that many queries in interactive vi-
sualization are incremental: assuming that previous results are avail-
able, the results needed for the next query can be quickly computed.
Unfortunately, we do not see easily how this would work for the multi-
scale queries necessary in a spatiotemporal setting. Just as recently,
Kandel et al. have proposed Datavore, a column-oriented data cube
representation [17], and Liu et al. leverage graphics hardware in iM-
mens, achieving extremely fast queries over large data [20]. While we
defer to Section 7 a full discussion and direct comparison of nanocubes
to Datavore and iMmens, we show in Figure 13 that nanocubes achieve
good performance for both sparse (the regime where Datavore’s data
structures are ideal) and dense occupation of key space (where iM-
mens’s are).

3 DATA CUBES

In the relational databases community, the table below is a relation, its
columns are attributes, its lines are records, and its entries are values.

Country Device Language
US Android en
US iPhone ru

South Africa iPhone en
India Android en

Australia iPhone en

An aggregation represents the idea of selecting a certain group of
records from a relation and summarizing this group using an aggrega-
tion function (e.g.count, sum, max, min). For example, a possible
aggregation for the relation above could be to select all its records and
summarize those using count. In this case, five would be the final
aggregation result. If we allow entries in the record to have a special
value All, we could represent this aggreation as the following relation:

Country Device Language Count
All All All 5

We refer to records in a relation that contain the special value All as ag-
gregation records. Using this notation, it is easy to understand the con-
ventional ways of describing aggregations for a given relation: group
by, cube, and rollup. A group by operation is one in which a relation is
derived from a base relation given a list of attributes and an aggregate
function. For example, group by on attributes Device and Language
with the count aggregate function results in the relation:

Country Device Language Count
All Android en 2
All iPhone en 2
All iPhone ru 1

Note that for every different combination of values present in the at-
tributes of the base relation an aggregation record is added to the re-

3

Online Submission ID: 276

1: function NANOCUBE([o1,o2, . . . ,on], S, `time) . n > 0
2: nano cube NODE() . New empty node
3: for i = 1 to n do
4: updated nodes /0
5: ADD(nano cube, oi, 1, S, `time, updated nodes)
6: end for
7: return nano cube
8: end function

1: function TRAILPROPERPATH(root, [v1, . . . ,vk])
2: stack STACK() . New Empty Stack
3: PUSH(stack, root)
4: node root
5: for i = 1 to k do
6: child CHILD(node, vi)
7: if child = null then
8: child NEWPROPERCHILD(node, vi, NODE())
9: else if ISSHAREDCHILD(node,child) then

10: child REPLACECHILD(node,
child, SHALLOWCOPY(child))

11: end if
12: PUSH(stack, child)
13: node child
14: end for
15: return stack
16: end function

1: function SHALLOWCOPY(node)
2: node sc NODE()
3: SETSHAREDCONTENT(node sc, CONTENT(node))
4: for v in CHILDRENLABELS(node) do
5: NEWSHAREDCHILD(node sc, v, CHILD(node, v))
6: end for
7: return node sc
8: end function

1: procedure ADD(root, o, d, S, `time, updated nodes)
2: [`1, . . . ,`k] CHAIN(S, d)
3: stack TRAILPROPERPATH(root, [`1(o), . . . ,`k(o)])
4: child null
5: while stack is not empty do
6: node POP(stack)
7: update false
8: if node has a single child then
9: SETSHAREDCONTENT(node, CONTENT(child))

10: else if CONTENT(node) is null then
11: SETPROPERCONTENT(node,

(d= dim(S) ?
SUMMEDTABLETIMESERIES() : NODE())

12: update true
13: else if CONTENTISSHARED(node) and

CONTENT(node) not in updated nodes then
14: SETPROPERCONTENT(node,

SHALLOWCOPY(CONTENT(node)))
15: update true
16: else if CONTENTISPROPER(node) then
17: update true
18: end if
19: if update then
20: if d= dim(S) then
21: INSERT(CONTENT(node), `time(o))
22: else
23: ADD(CONTENT(node), o, d+1, updated nodes)
24: end if
25: INSERT(updated nodes, CONTENT(node))
26: end if
27: child node
28: end while
29: end procedure

Fig. 3. Pseudo-code of an algorithm to build nanocubes.

Our technique is most closely related to the work of Sismanis et
al. [30, 29]. Specifically, we use similar ideas to reduce the size of
a data cube from potentially exponential in the cardinality of the key
space (we define these terms in Section 4.1) to essentially linear [31].
Nanocubes improve on Sismanis et al.’s work in two fundamental di-
rections. First, we develop a model for spatiotemporal data cubes that
exploits unique characteristics of space and time to get a good com-
promise between space usage and efficiency of queries (Sections 4.2.1
and 6). Second, we show how these structures enable the visualiza-
tions which are common in interactive tools (Section 4.3).

There have also been recent efforts to build data cube structures
specifically suited for visualization. Crossfilter [32] is a software pack-
age built on the clever observation that many queries in interactive vi-
sualization are incremental: assuming that previous results are avail-
able, the results needed for the next query can be quickly computed.
Unfortunately, we do not see easily how this would work for the multi-
scale queries necessary in a spatiotemporal setting. Just as recently,
Kandel et al. have proposed Datavore, a column-oriented data cube
representation [17], and Liu et al. leverage graphics hardware in iM-
mens, achieving extremely fast queries over large data [20]. While we
defer to Section 7 a full discussion and direct comparison of nanocubes
to Datavore and iMmens, we show in Figure 13 that nanocubes achieve
good performance for both sparse (the regime where Datavore’s data
structures are ideal) and dense occupation of key space (where iM-
mens’s are).

3 DATA CUBES

In the relational databases community, the table below is a relation, its
columns are attributes, its lines are records, and its entries are values.

Country Device Language
US Android en
US iPhone ru

South Africa iPhone en
India Android en

Australia iPhone en

An aggregation represents the idea of selecting a certain group of
records from a relation and summarizing this group using an aggrega-
tion function (e.g.count, sum, max, min). For example, a possible
aggregation for the relation above could be to select all its records and
summarize those using count. In this case, five would be the final
aggregation result. If we allow entries in the record to have a special
value All, we could represent this aggreation as the following relation:

Country Device Language Count
All All All 5

We refer to records in a relation that contain the special value All as ag-
gregation records. Using this notation, it is easy to understand the con-
ventional ways of describing aggregations for a given relation: group
by, cube, and rollup. A group by operation is one in which a relation is
derived from a base relation given a list of attributes and an aggregate
function. For example, group by on attributes Device and Language
with the count aggregate function results in the relation:

Country Device Language Count
All Android en 2
All iPhone en 2
All iPhone ru 1

Note that for every different combination of values present in the at-
tributes of the base relation an aggregation record is added to the re-

3

Natural language query s c t URL
count of all Delta flights R U R { Delta } R U /where/carrier=Delta
count of all Delta flights in the Midwest R (Midwest) R { Delta } R U /region/(Midwest)/where/carrier=Delta
count of early flights in 2010 R U D R (2010) /field/carrier/when/(2010)
time-series of all United flights in 2009 R U R U D (2009) /tseries/when/2009/where/carrier=United
heatmap of Delta flights in 2010 D (tile) R { Delta } R (2010) /tile/(tile)/where/carrier=Delta

Fig. 4. A simplified set of queries supported by the nanocube data structure. The column s represents space; t, time; c, category. R means “rollup”,
D means “drilldown”. The value next to R or D contains the subset of that dimension’s domain being selected. We use U to represent the entire
domain (“universe”). Omitted here, but supported by our structure, are: the extra parameter for number of steps throughout the time region in a
time-based drilldown; multiple categories with separate rollups and drilldowns; tiles of variable resolution.

sulting relation. In our running example these combinations are (An-
droid, en), (iPhone, en), and (iPhone, ru). The cube operation is the
result of collecting all possible group by aggregations into a single re-
lation for a given list of attributes. In our running example, the cube
for count on Device and Language would be the same as the union
of four group by’s: on (1) no attributes; on (2) Device only; on (3)
Language only; and (4) on Device and Language (2n group bys where
n is the number of input attributes):

Country Device Language Count
All All All 5
All Android All 2
All iPhone All 3
All All eu 4
All All ru 1
All iPhone ru 1
All Android en 2
All iPhone en 2
All iPhone ru 1

Finally, a roll up is a constrained version of the cube operation where
the order of the input attributes is important. So a roll up on Device
and Language (in this order) means the union of group by’s on: (1)
no attributes; (2) Device; and (3) Device and Language. Note that the
group by on Language only is not part of the roll up. As the results
of group by’s, cubes and roll ups can be seen as relations, we can
naturally compose such operations. As we will describe nanocubes is
a specialized data structure to store and query cubes of roll ups.

4 NANOCUBES: A COMPACT, SPATIOTEMPORAL ROLL-UP
CUBE

Data visualizations in a computer are necessarily bounded by display
size, and so we would like to be able to quickly collect subspaces of
the dataset that would end up in the same pixel on the screen. How-
ever, spatiotemporal navigation is inherently multiscale. The same
data structure should support quick indexing for a visualization over
multiple years of time series and for drilling down into one particu-
lar hour or day. Similarly, the data cube should support aggregation
queries over vast spatial regions covering entire continents, as well as
very narrow queries covering only a few city blocks.

The database notion of roll ups (Section 3), in a sense, aligns nicely
with the notion of Level of Detail. For example, if the records of a table
(relation) contain a location attribute, one can design a roll up query
whose resulting relation encodes the same information as the one en-
coded in a level of detail data structure. More concretely, suppose
`1, . . . ,`k are attributes computed from the original location attribute
and yield ’quad-tree addresses’ of increasingly higher levels of detail
(from 1 to k). A roll up query on these (computed) attributes results in,
essentially, the same information as the one contained in a quad-tree
(given that we are keeping the same summary in both, e.g.count). At
first, this connection might be obvious but bridges between terminolo-
gies from different areas is usually important. As it turns out, only later
in the development of nanocubes is that we became aware of Hierar-
chical Dwarf-Cubes [29], which is a highly related to nanocubes and
was developed by the database community to efficiently store results
of aggreagation queries.

The second important notion in the design of nanocubes is the idea
that we want to combine aggregations of independent dimensions at

independent levels of detail. For example we might want to know for
a whole country, what is the spatial distribution of tweets gererated
by an iPhone: coarse on the spatial dimension, but specific on the
device dimension; conversely we might want to know the distribu-
tion of tweets (coarse on device) in a small block of a city (fine in
space). In relational database terminology, this model has a name: it
is a cube of roll-ups, or a roll-up cube. Now with the language set up,
we can state: A nanocube is a data structure to efficiently store and
query spatio-temporal roll-up cubes. Besides implmentation tricks
(e.g. tagged pointers, carefully design of the bit layout of the struc-
tures, specifically designed to live in main memory), there is, to the
best of our knowledge, a qualitative difference in nanocubes to other
data structures like [29]. The difference is in what nanocubes store for
each aggregation which is deeply related to spatio-temporal datasets:
it stores time series in a sparse summed table format. This element of
nanocubes is explained in Section 4.3 and, cannot be cannot be effi-
ciently simulated (memory-wise) by previous datastructures.

In the remainder of this section, we present a formal description
of the components that make up our nanocube index, pseudo-code
for building nanocubes together with an illustrated example, and how
queries are made against our index.

4.1 Definitions

Let O be a set of objects. A labeling function ` : O! L associates a
label value to the objects of O. We can think of ` as an attribute in
a relational database. In connection with the level of detail discus-
sion above, if `1 and `2 are two labeling functions for O, we say `1 is
coarser than `2 or that `2 is finer than `1 if for any two objects o,o0 2O
the implication `2(o) = `2(o0)) `1(o) = `1(o0) holds. We denote this
fact by `1 < `2.

A sequence of labeling functions c = [`1,`, . . . ,`k] for objects O
is a chain for O if every labeling function is coarser than the next
labeling function in the sequence: `i < `i+1. Note how chains are
related to roll ups, we avoid the same name to not overload more the
term roll up. The number of levels of a chain is defined by levels(c) =
|c|+1. An indexing schema for objects O consists of a sequence of
chains S = [c1,c2, . . . ,cn]. The dimension of an indexing schema S
is the length of its sequence of chains and is denoted by dim(S). The
multiplicity of a schema S is the product of its chains’ number of levels:
µ(S) = ’n

i=1 levels(ci).
A full assignment for a sequence of labeling functions [`1,`2, . . . ,`k]

is a sequence of label values [v1,v2, . . . ,vk] where vi is a label value
under `i. Any prefix of a full assignment for a sequence of label-
ing functions, including the empty one, is referred to as a partial as-
signment. Note that an full assignment is also a patial assignment
since a sequence is also a prefix of itself. An address on a schema
is a sequence of partial assignments for its chains, more formally, if
S = [c1,c2, . . . ,cn] is an indexing schema, then a = [p1, p2, . . . , pn] is
an address of S if pi is a partial assignment for chain ci. The set of pos-
sible addresses of S is denoted by addr(S). and its size is referred to as
the Global Cardinality of S. The subset of addr(S) whose addresses
contain only full assignments is called the Key Cardinality of S. The
key Key Cardinality is exactely the number of the finest resoultion bins
a nanocube can store.

The addresses of an object o under indexing schema S, denoted by
addr(o,S) are all the addresses in addr(S) whose partial assignments

4

Relation

Aggregation

Group By on Device, Language

Cube on Device, Language

Equivalent to Group By on
all possible subsets of
{Device, Language}

A

B

C

D

Fig. 5. A sample relation and its associated aggregation operators.

3

A

B

C

Online Submission ID: 276

1: function NANOCUBE([o1,o2, . . . ,on], S, `time) . n > 0
2: nano cube NODE() . New empty node
3: for i = 1 to n do
4: updated nodes /0
5: ADD(nano cube, oi, 1, S, `time, updated nodes)
6: end for
7: return nano cube
8: end function

1: function TRAILPROPERPATH(root, [v1, . . . ,vk])
2: stack STACK() . New Empty Stack
3: PUSH(stack, root)
4: node root
5: for i = 1 to k do
6: child CHILD(node, vi)
7: if child = null then
8: child NEWPROPERCHILD(node, vi, NODE())
9: else if ISSHAREDCHILD(node,child) then

10: child REPLACECHILD(node,
child, SHALLOWCOPY(child))

11: end if
12: PUSH(stack, child)
13: node child
14: end for
15: return stack
16: end function

1: function SHALLOWCOPY(node)
2: node sc NODE()
3: SETSHAREDCONTENT(node sc, CONTENT(node))
4: for v in CHILDRENLABELS(node) do
5: NEWSHAREDCHILD(node sc, v, CHILD(node, v))
6: end for
7: return node sc
8: end function

1: procedure ADD(root, o, d, S, `time, updated nodes)
2: [`1, . . . ,`k] CHAIN(S, d)
3: stack TRAILPROPERPATH(root, [`1(o), . . . ,`k(o)])
4: child null
5: while stack is not empty do
6: node POP(stack)
7: update false
8: if node has a single child then
9: SETSHAREDCONTENT(node, CONTENT(child))

10: else if CONTENT(node) is null then
11: SETPROPERCONTENT(node,

(d= dim(S) ?
SUMMEDTABLETIMESERIES() : NODE())

12: update true
13: else if CONTENTISSHARED(node) and

CONTENT(node) not in updated nodes then
14: SETPROPERCONTENT(node,

SHALLOWCOPY(CONTENT(node)))
15: update true
16: else if CONTENTISPROPER(node) then
17: update true
18: end if
19: if update then
20: if d= dim(S) then
21: INSERT(CONTENT(node), `time(o))
22: else
23: ADD(CONTENT(node), o, d+1, updated nodes)
24: end if
25: INSERT(updated nodes, CONTENT(node))
26: end if
27: child node
28: end while
29: end procedure

Fig. 3. Pseudo-code of an algorithm to build nanocubes.

exploits unique characteristics of space and time to get a good com-
promise between space usage and efficiency of queries (Sections 4.2.1
and 6). Second, we show how these structures enable the visualiza-
tions which are common in interactive tools (Section 4.3).

There have been recent efforts to build data cube structures specif-
ically suited for visualization. Crossfilter [32] is a software package
built on the clever observation that many queries in interactive visual-
ization are incremental: assuming that previous results are available,
the results needed for the next query can be quickly computed. Unfor-
tunately, we do not see easily how this would work for the multiscale
queries necessary in a spatiotemporal setting. Just as recently, Kandel
et al. have proposed Datavore, a column-oriented database support fast
data cube queries [17], and Liu et al. leverage graphics hardware in iM-
mens, achieving extremely fast queries over large data [20]. While we
defer to Section 7 a full discussion and direct comparison of nanocubes
to Datavore and iMmens, we show in Figure 14 that nanocubes achieve
good performance for both sparse (the regime where Datavore’s data
structures are ideal) and dense occupation of key space (where iM-
mens’s are).

3 DATA CUBES

Following common practice, we will call the table in Figure 5 a rela-
tion, its columns attributes, its lines records, and its entries values. An
aggregation represents the idea of selecting a certain group of records
from a relation and summarizing this group using an aggregation func-
tion (e.g. count, sum, max, min). For example, a possible aggrega-
tion for the relation A could be to select all its records and summarize
those using count, yielding five as the aggregation result. If we al-
low a special value All to be a valid attribute value, we could represent
this aggregation as relation B in Figure 5.

A record that contains the special value All is an aggregation record.

Using this notation, it is easy to understand some conventional ways
of describing aggregations for a given relation: group by, cube, and
rollup. A group by operation is one in which a relation is derived from
a base relation given a list of attributes and an aggregate function. For
example, group by on attributes Device and Language with the count
aggregate function results in the relation C in Figure 5.

Note that for every different combination of values present in the
attributes of a base relation an aggregation record is added to the re-
sulting relation. In our running example (Figure 5) these combinations
are (Android, en), (iPhone, en), and (iPhone, ru). The cube operation

Online Submission ID: 276

1: function NANOCUBE([o1,o2, . . . ,on], S, `time) . n > 0
2: nano cube NODE() . New empty node
3: for i = 1 to n do
4: updated nodes /0
5: ADD(nano cube, oi, 1, S, `time, updated nodes)
6: end for
7: return nano cube
8: end function

1: function TRAILPROPERPATH(root, [v1, . . . ,vk])
2: stack STACK() . New Empty Stack
3: PUSH(stack, root)
4: node root
5: for i = 1 to k do
6: child CHILD(node, vi)
7: if child = null then
8: child NEWPROPERCHILD(node, vi, NODE())
9: else if ISSHAREDCHILD(node,child) then

10: child REPLACECHILD(node,
child, SHALLOWCOPY(child))

11: end if
12: PUSH(stack, child)
13: node child
14: end for
15: return stack
16: end function

1: function SHALLOWCOPY(node)
2: node sc NODE()
3: SETSHAREDCONTENT(node sc, CONTENT(node))
4: for v in CHILDRENLABELS(node) do
5: NEWSHAREDCHILD(node sc, v, CHILD(node, v))
6: end for
7: return node sc
8: end function

1: procedure ADD(root, o, d, S, `time, updated nodes)
2: [`1, . . . ,`k] CHAIN(S, d)
3: stack TRAILPROPERPATH(root, [`1(o), . . . ,`k(o)])
4: child null
5: while stack is not empty do
6: node POP(stack)
7: update false
8: if node has a single child then
9: SETSHAREDCONTENT(node, CONTENT(child))

10: else if CONTENT(node) is null then
11: SETPROPERCONTENT(node,

(d= dim(S) ?
SUMMEDTABLETIMESERIES() : NODE())

12: update true
13: else if CONTENTISSHARED(node) and

CONTENT(node) not in updated nodes then
14: SETPROPERCONTENT(node,

SHALLOWCOPY(CONTENT(node)))
15: update true
16: else if CONTENTISPROPER(node) then
17: update true
18: end if
19: if update then
20: if d= dim(S) then
21: INSERT(CONTENT(node), `time(o))
22: else
23: ADD(CONTENT(node), o, d+1, updated nodes)
24: end if
25: INSERT(updated nodes, CONTENT(node))
26: end if
27: child node
28: end while
29: end procedure

Fig. 3. Pseudo-code of an algorithm to build nanocubes.

Our technique is most closely related to the work of Sismanis et
al. [30, 29]. Specifically, we use similar ideas to reduce the size of
a data cube from potentially exponential in the cardinality of the key
space (we define these terms in Section 4.1) to essentially linear [31].
Nanocubes improve on Sismanis et al.’s work in two fundamental di-
rections. First, we develop a model for spatiotemporal data cubes that
exploits unique characteristics of space and time to get a good com-
promise between space usage and efficiency of queries (Sections 4.2.1
and 6). Second, we show how these structures enable the visualiza-
tions which are common in interactive tools (Section 4.3).

There have also been recent efforts to build data cube structures
specifically suited for visualization. Crossfilter [32] is a software pack-
age built on the clever observation that many queries in interactive vi-
sualization are incremental: assuming that previous results are avail-
able, the results needed for the next query can be quickly computed.
Unfortunately, we do not see easily how this would work for the multi-
scale queries necessary in a spatiotemporal setting. Just as recently,
Kandel et al. have proposed Datavore, a column-oriented data cube
representation [17], and Liu et al. leverage graphics hardware in iM-
mens, achieving extremely fast queries over large data [20]. While we
defer to Section 7 a full discussion and direct comparison of nanocubes
to Datavore and iMmens, we show in Figure 13 that nanocubes achieve
good performance for both sparse (the regime where Datavore’s data
structures are ideal) and dense occupation of key space (where iM-
mens’s are).

3 DATA CUBES

In the relational databases community, the table below is a relation, its
columns are attributes, its lines are records, and its entries are values.

Country Device Language
US Android en
US iPhone ru

South Africa iPhone en
India Android en

Australia iPhone en

An aggregation represents the idea of selecting a certain group of
records from a relation and summarizing this group using an aggrega-
tion function (e.g.count, sum, max, min). For example, a possible
aggregation for the relation above could be to select all its records and
summarize those using count. In this case, five would be the final
aggregation result. If we allow entries in the record to have a special
value All, we could represent this aggreation as the following relation:

Country Device Language Count
All All All 5

We refer to records in a relation that contain the special value All as ag-
gregation records. Using this notation, it is easy to understand the con-
ventional ways of describing aggregations for a given relation: group
by, cube, and rollup. A group by operation is one in which a relation is
derived from a base relation given a list of attributes and an aggregate
function. For example, group by on attributes Device and Language
with the count aggregate function results in the relation:

Country Device Language Count
All Android en 2
All iPhone en 2
All iPhone ru 1

Note that for every different combination of values present in the at-
tributes of the base relation an aggregation record is added to the re-

3

Online Submission ID: 276

1: function NANOCUBE([o1,o2, . . . ,on], S, `time) . n > 0
2: nano cube NODE() . New empty node
3: for i = 1 to n do
4: updated nodes /0
5: ADD(nano cube, oi, 1, S, `time, updated nodes)
6: end for
7: return nano cube
8: end function

1: function TRAILPROPERPATH(root, [v1, . . . ,vk])
2: stack STACK() . New Empty Stack
3: PUSH(stack, root)
4: node root
5: for i = 1 to k do
6: child CHILD(node, vi)
7: if child = null then
8: child NEWPROPERCHILD(node, vi, NODE())
9: else if ISSHAREDCHILD(node,child) then

10: child REPLACECHILD(node,
child, SHALLOWCOPY(child))

11: end if
12: PUSH(stack, child)
13: node child
14: end for
15: return stack
16: end function

1: function SHALLOWCOPY(node)
2: node sc NODE()
3: SETSHAREDCONTENT(node sc, CONTENT(node))
4: for v in CHILDRENLABELS(node) do
5: NEWSHAREDCHILD(node sc, v, CHILD(node, v))
6: end for
7: return node sc
8: end function

1: procedure ADD(root, o, d, S, `time, updated nodes)
2: [`1, . . . ,`k] CHAIN(S, d)
3: stack TRAILPROPERPATH(root, [`1(o), . . . ,`k(o)])
4: child null
5: while stack is not empty do
6: node POP(stack)
7: update false
8: if node has a single child then
9: SETSHAREDCONTENT(node, CONTENT(child))

10: else if CONTENT(node) is null then
11: SETPROPERCONTENT(node,

(d= dim(S) ?
SUMMEDTABLETIMESERIES() : NODE())

12: update true
13: else if CONTENTISSHARED(node) and

CONTENT(node) not in updated nodes then
14: SETPROPERCONTENT(node,

SHALLOWCOPY(CONTENT(node)))
15: update true
16: else if CONTENTISPROPER(node) then
17: update true
18: end if
19: if update then
20: if d= dim(S) then
21: INSERT(CONTENT(node), `time(o))
22: else
23: ADD(CONTENT(node), o, d+1, updated nodes)
24: end if
25: INSERT(updated nodes, CONTENT(node))
26: end if
27: child node
28: end while
29: end procedure

Fig. 3. Pseudo-code of an algorithm to build nanocubes.

Our technique is most closely related to the work of Sismanis et
al. [30, 29]. Specifically, we use similar ideas to reduce the size of
a data cube from potentially exponential in the cardinality of the key
space (we define these terms in Section 4.1) to essentially linear [31].
Nanocubes improve on Sismanis et al.’s work in two fundamental di-
rections. First, we develop a model for spatiotemporal data cubes that
exploits unique characteristics of space and time to get a good com-
promise between space usage and efficiency of queries (Sections 4.2.1
and 6). Second, we show how these structures enable the visualiza-
tions which are common in interactive tools (Section 4.3).

There have also been recent efforts to build data cube structures
specifically suited for visualization. Crossfilter [32] is a software pack-
age built on the clever observation that many queries in interactive vi-
sualization are incremental: assuming that previous results are avail-
able, the results needed for the next query can be quickly computed.
Unfortunately, we do not see easily how this would work for the multi-
scale queries necessary in a spatiotemporal setting. Just as recently,
Kandel et al. have proposed Datavore, a column-oriented data cube
representation [17], and Liu et al. leverage graphics hardware in iM-
mens, achieving extremely fast queries over large data [20]. While we
defer to Section 7 a full discussion and direct comparison of nanocubes
to Datavore and iMmens, we show in Figure 13 that nanocubes achieve
good performance for both sparse (the regime where Datavore’s data
structures are ideal) and dense occupation of key space (where iM-
mens’s are).

3 DATA CUBES

In the relational databases community, the table below is a relation, its
columns are attributes, its lines are records, and its entries are values.

Country Device Language
US Android en
US iPhone ru

South Africa iPhone en
India Android en

Australia iPhone en

An aggregation represents the idea of selecting a certain group of
records from a relation and summarizing this group using an aggrega-
tion function (e.g.count, sum, max, min). For example, a possible
aggregation for the relation above could be to select all its records and
summarize those using count. In this case, five would be the final
aggregation result. If we allow entries in the record to have a special
value All, we could represent this aggreation as the following relation:

Country Device Language Count
All All All 5

We refer to records in a relation that contain the special value All as ag-
gregation records. Using this notation, it is easy to understand the con-
ventional ways of describing aggregations for a given relation: group
by, cube, and rollup. A group by operation is one in which a relation is
derived from a base relation given a list of attributes and an aggregate
function. For example, group by on attributes Device and Language
with the count aggregate function results in the relation:

Country Device Language Count
All Android en 2
All iPhone en 2
All iPhone ru 1

Note that for every different combination of values present in the at-
tributes of the base relation an aggregation record is added to the re-

3

Online Submission ID: 276

1: function NANOCUBE([o1,o2, . . . ,on], S, `time) . n > 0
2: nano cube NODE() . New empty node
3: for i = 1 to n do
4: updated nodes /0
5: ADD(nano cube, oi, 1, S, `time, updated nodes)
6: end for
7: return nano cube
8: end function

1: function TRAILPROPERPATH(root, [v1, . . . ,vk])
2: stack STACK() . New Empty Stack
3: PUSH(stack, root)
4: node root
5: for i = 1 to k do
6: child CHILD(node, vi)
7: if child = null then
8: child NEWPROPERCHILD(node, vi, NODE())
9: else if ISSHAREDCHILD(node,child) then

10: child REPLACECHILD(node,
child, SHALLOWCOPY(child))

11: end if
12: PUSH(stack, child)
13: node child
14: end for
15: return stack
16: end function

1: function SHALLOWCOPY(node)
2: node sc NODE()
3: SETSHAREDCONTENT(node sc, CONTENT(node))
4: for v in CHILDRENLABELS(node) do
5: NEWSHAREDCHILD(node sc, v, CHILD(node, v))
6: end for
7: return node sc
8: end function

1: procedure ADD(root, o, d, S, `time, updated nodes)
2: [`1, . . . ,`k] CHAIN(S, d)
3: stack TRAILPROPERPATH(root, [`1(o), . . . ,`k(o)])
4: child null
5: while stack is not empty do
6: node POP(stack)
7: update false
8: if node has a single child then
9: SETSHAREDCONTENT(node, CONTENT(child))

10: else if CONTENT(node) is null then
11: SETPROPERCONTENT(node,

(d= dim(S) ?
SUMMEDTABLETIMESERIES() : NODE())

12: update true
13: else if CONTENTISSHARED(node) and

CONTENT(node) not in updated nodes then
14: SETPROPERCONTENT(node,

SHALLOWCOPY(CONTENT(node)))
15: update true
16: else if CONTENTISPROPER(node) then
17: update true
18: end if
19: if update then
20: if d= dim(S) then
21: INSERT(CONTENT(node), `time(o))
22: else
23: ADD(CONTENT(node), o, d+1, updated nodes)
24: end if
25: INSERT(updated nodes, CONTENT(node))
26: end if
27: child node
28: end while
29: end procedure

Fig. 3. Pseudo-code of an algorithm to build nanocubes.

Our technique is most closely related to the work of Sismanis et
al. [30, 29]. Specifically, we use similar ideas to reduce the size of
a data cube from potentially exponential in the cardinality of the key
space (we define these terms in Section 4.1) to essentially linear [31].
Nanocubes improve on Sismanis et al.’s work in two fundamental di-
rections. First, we develop a model for spatiotemporal data cubes that
exploits unique characteristics of space and time to get a good com-
promise between space usage and efficiency of queries (Sections 4.2.1
and 6). Second, we show how these structures enable the visualiza-
tions which are common in interactive tools (Section 4.3).

There have also been recent efforts to build data cube structures
specifically suited for visualization. Crossfilter [32] is a software pack-
age built on the clever observation that many queries in interactive vi-
sualization are incremental: assuming that previous results are avail-
able, the results needed for the next query can be quickly computed.
Unfortunately, we do not see easily how this would work for the multi-
scale queries necessary in a spatiotemporal setting. Just as recently,
Kandel et al. have proposed Datavore, a column-oriented data cube
representation [17], and Liu et al. leverage graphics hardware in iM-
mens, achieving extremely fast queries over large data [20]. While we
defer to Section 7 a full discussion and direct comparison of nanocubes
to Datavore and iMmens, we show in Figure 13 that nanocubes achieve
good performance for both sparse (the regime where Datavore’s data
structures are ideal) and dense occupation of key space (where iM-
mens’s are).

3 DATA CUBES

In the relational databases community, the table below is a relation, its
columns are attributes, its lines are records, and its entries are values.

Country Device Language
US Android en
US iPhone ru

South Africa iPhone en
India Android en

Australia iPhone en

An aggregation represents the idea of selecting a certain group of
records from a relation and summarizing this group using an aggrega-
tion function (e.g.count, sum, max, min). For example, a possible
aggregation for the relation above could be to select all its records and
summarize those using count. In this case, five would be the final
aggregation result. If we allow entries in the record to have a special
value All, we could represent this aggreation as the following relation:

Country Device Language Count
All All All 5

We refer to records in a relation that contain the special value All as ag-
gregation records. Using this notation, it is easy to understand the con-
ventional ways of describing aggregations for a given relation: group
by, cube, and rollup. A group by operation is one in which a relation is
derived from a base relation given a list of attributes and an aggregate
function. For example, group by on attributes Device and Language
with the count aggregate function results in the relation:

Country Device Language Count
All Android en 2
All iPhone en 2
All iPhone ru 1

Note that for every different combination of values present in the at-
tributes of the base relation an aggregation record is added to the re-

3

Natural language query s c t URL
count of all Delta flights R U R { Delta } R U /where/carrier=Delta
count of all Delta flights in the Midwest R (Midwest) R { Delta } R U /region/(Midwest)/where/carrier=Delta
count of early flights in 2010 R U D R (2010) /field/carrier/when/(2010)
time-series of all United flights in 2009 R U R U D (2009) /tseries/when/2009/where/carrier=United
heatmap of Delta flights in 2010 D (tile) R { Delta } R (2010) /tile/(tile)/where/carrier=Delta

Fig. 4. A simplified set of queries supported by the nanocube data structure. The column s represents space; t, time; c, category. R means “rollup”,
D means “drilldown”. The value next to R or D contains the subset of that dimension’s domain being selected. We use U to represent the entire
domain (“universe”). Omitted here, but supported by our structure, are: the extra parameter for number of steps throughout the time region in a
time-based drilldown; multiple categories with separate rollups and drilldowns; tiles of variable resolution.

sulting relation. In our running example these combinations are (An-
droid, en), (iPhone, en), and (iPhone, ru). The cube operation is the
result of collecting all possible group by aggregations into a single re-
lation for a given list of attributes. In our running example, the cube
for count on Device and Language would be the same as the union
of four group by’s: on (1) no attributes; on (2) Device only; on (3)
Language only; and (4) on Device and Language (2n group bys where
n is the number of input attributes):

Country Device Language Count
All All All 5
All Android All 2
All iPhone All 3
All All eu 4
All All ru 1
All iPhone ru 1
All Android en 2
All iPhone en 2
All iPhone ru 1

Finally, a roll up is a constrained version of the cube operation where
the order of the input attributes is important. So a roll up on Device
and Language (in this order) means the union of group by’s on: (1)
no attributes; (2) Device; and (3) Device and Language. Note that the
group by on Language only is not part of the roll up. As the results
of group by’s, cubes and roll ups can be seen as relations, we can
naturally compose such operations. As we will describe nanocubes is
a specialized data structure to store and query cubes of roll ups.

4 NANOCUBES: A COMPACT, SPATIOTEMPORAL ROLL-UP
CUBE

Data visualizations in a computer are necessarily bounded by display
size, and so we would like to be able to quickly collect subspaces of
the dataset that would end up in the same pixel on the screen. How-
ever, spatiotemporal navigation is inherently multiscale. The same
data structure should support quick indexing for a visualization over
multiple years of time series and for drilling down into one particu-
lar hour or day. Similarly, the data cube should support aggregation
queries over vast spatial regions covering entire continents, as well as
very narrow queries covering only a few city blocks.

The database notion of roll ups (Section 3), in a sense, aligns nicely
with the notion of Level of Detail. For example, if the records of a table
(relation) contain a location attribute, one can design a roll up query
whose resulting relation encodes the same information as the one en-
coded in a level of detail data structure. More concretely, suppose
`1, . . . ,`k are attributes computed from the original location attribute
and yield ’quad-tree addresses’ of increasingly higher levels of detail
(from 1 to k). A roll up query on these (computed) attributes results in,
essentially, the same information as the one contained in a quad-tree
(given that we are keeping the same summary in both, e.g.count). At
first, this connection might be obvious but bridges between terminolo-
gies from different areas is usually important. As it turns out, only later
in the development of nanocubes is that we became aware of Hierar-
chical Dwarf-Cubes [29], which is a highly related to nanocubes and
was developed by the database community to efficiently store results
of aggreagation queries.

The second important notion in the design of nanocubes is the idea
that we want to combine aggregations of independent dimensions at

independent levels of detail. For example we might want to know for
a whole country, what is the spatial distribution of tweets gererated
by an iPhone: coarse on the spatial dimension, but specific on the
device dimension; conversely we might want to know the distribu-
tion of tweets (coarse on device) in a small block of a city (fine in
space). In relational database terminology, this model has a name: it
is a cube of roll-ups, or a roll-up cube. Now with the language set up,
we can state: A nanocube is a data structure to efficiently store and
query spatio-temporal roll-up cubes. Besides implmentation tricks
(e.g. tagged pointers, carefully design of the bit layout of the struc-
tures, specifically designed to live in main memory), there is, to the
best of our knowledge, a qualitative difference in nanocubes to other
data structures like [29]. The difference is in what nanocubes store for
each aggregation which is deeply related to spatio-temporal datasets:
it stores time series in a sparse summed table format. This element of
nanocubes is explained in Section 4.3 and, cannot be cannot be effi-
ciently simulated (memory-wise) by previous datastructures.

In the remainder of this section, we present a formal description
of the components that make up our nanocube index, pseudo-code
for building nanocubes together with an illustrated example, and how
queries are made against our index.

4.1 Definitions

Let O be a set of objects. A labeling function ` : O! L associates a
label value to the objects of O. We can think of ` as an attribute in
a relational database. In connection with the level of detail discus-
sion above, if `1 and `2 are two labeling functions for O, we say `1 is
coarser than `2 or that `2 is finer than `1 if for any two objects o,o0 2O
the implication `2(o) = `2(o0)) `1(o) = `1(o0) holds. We denote this
fact by `1 < `2.

A sequence of labeling functions c = [`1,`, . . . ,`k] for objects O
is a chain for O if every labeling function is coarser than the next
labeling function in the sequence: `i < `i+1. Note how chains are
related to roll ups, we avoid the same name to not overload more the
term roll up. The number of levels of a chain is defined by levels(c) =
|c|+1. An indexing schema for objects O consists of a sequence of
chains S = [c1,c2, . . . ,cn]. The dimension of an indexing schema S
is the length of its sequence of chains and is denoted by dim(S). The
multiplicity of a schema S is the product of its chains’ number of levels:
µ(S) = ’n

i=1 levels(ci).
A full assignment for a sequence of labeling functions [`1,`2, . . . ,`k]

is a sequence of label values [v1,v2, . . . ,vk] where vi is a label value
under `i. Any prefix of a full assignment for a sequence of label-
ing functions, including the empty one, is referred to as a partial as-
signment. Note that an full assignment is also a patial assignment
since a sequence is also a prefix of itself. An address on a schema
is a sequence of partial assignments for its chains, more formally, if
S = [c1,c2, . . . ,cn] is an indexing schema, then a = [p1, p2, . . . , pn] is
an address of S if pi is a partial assignment for chain ci. The set of pos-
sible addresses of S is denoted by addr(S). and its size is referred to as
the Global Cardinality of S. The subset of addr(S) whose addresses
contain only full assignments is called the Key Cardinality of S. The
key Key Cardinality is exactely the number of the finest resoultion bins
a nanocube can store.

The addresses of an object o under indexing schema S, denoted by
addr(o,S) are all the addresses in addr(S) whose partial assignments

4

Relation

Aggregation

Group By on Device, Language

Cube on Device, Language

Equivalent to Group By on
all possible subsets of
{Device, Language}

A

B

C

D

Fig. 5. A sample relation and its associated aggregation operators.

3

A

B

C

Fig. 4. A sample relation and its associated aggregation operators.

Natural language query s c t URL
count of all Delta flights R U R { Delta } R U /where/carrier=Delta
count of all Delta flights in the Midwest R Midwest R { Delta } R U /region/Midwest/where/carrier=Delta
count of all flights in 2010 R U D R 2010 /field/carrier/when/2010
time-series of all United flights in 2009 R U R { United } D 2009 /tseries/when/2009/where/carrier=United
heatmap of Delta flights in 2010 D tile0 R { Delta } R 2010 /tile/tile0/when/2010/where/carrier=Delta

Fig. 5. A simplified set of queries supported by nanocubes. The column s represents space; t, time; c, category. R means “rollup”, D means
“drilldown”. The value next to R or D contains the subset of that dimension’s domain being selected. U represents the entire domain (“universe”).

The CUBE operation is the result of collecting all possible
GROUP BY aggregations into a single relation for a given list of at-
tributes (i.e. 2n GROUP BYs for n input attributes). In our running
example, the CUBE for count on Device and Language is the union
of four GROUP BYs: on (1) no attributes; on (2) Device only; on (3)
Language only; and (4) on Device and Language, shown in relation
D in Figure 4. Finally, a ROLL UP is a constrained version of the
CUBE operation where the order of the input attributes is important. A
ROLL UP on Device and Language (in this order) means the union of
GROUP BYs on: (1) no attributes; (2) Device; and (3) Device and Lan-
guage, but does not include the GROUP BY on Language only. As the
results of GROUP BYs, CUBEs and ROLL UPs can be seen as relations,
we can naturally compose such operators (e.g. a ROLL UP CUBE).

4 NANOCUBE: A COMPACT, SPATIOTEMPORAL DATA CUBE

Data visualizations in a computer are necessarily bounded by display
size, and so we would like to be able to quickly collect subsets of
the dataset that would end up in the same pixel on the screen. How-
ever, spatiotemporal navigation is inherently multiscale. The same
data structure should support quick indexing for a visualization over
multiple years of time series and for drilling down into one particu-
lar hour or day. Similarly, the data cube should support aggregation
queries over vast spatial regions covering entire continents, as well as
very narrow queries covering only a few city blocks.

The database notion of ROLL UP, in a sense, aligns nicely with the
notion of Level of Detail. For example, if the records of a table (re-
lation) contain a location attribute, one can design a ROLL UP query
whose resulting relation encodes the same information as the one en-
coded in a level of detail data structure. More concretely, suppose
`1, . . . , `k are attributes computed from the original location attribute
and yield “quadtree addresses” of increasingly higher levels of detail
(from 1 to k). A ROLL UP query on these (computed) attributes results
in, essentially, the same information as the one contained in a quadtree
(given that we are keeping the same summary in both, e.g. count).

The second important notion in the design of nanocubes is the idea
that we want to combine aggregations of independent dimensions at
independent levels of detail. For example we might want to know for
a whole country, what is the spatial distribution of tweets generated
by an iPhone: coarse on the spatial dimension, but specific on the de-
vice dimension. Conversely, we might want to know the distribution
of tweets (coarse on device) in a small city block (fine in space). In
relational database terminology, this model has a name: it is a CUBE
of ROLL UP, or a ROLL UP CUBE. With the terminology set, we can
state: a nanocube is a data structure to efficiently store and query spa-
tiotemporal ROLL UP CUBE. Besides implementation tricks, the main
difference between nanocubes and previously published sparse coa-
lesced data cubes such as Dwarf cubes [29] is in the design of aggrega-
tions across spatiotemporal dimensions (see Sections 4.3.1 and 4.3.3).
Next, we present a formal description of the components that make
up our nanocube index, pseudo-code for building nanocubes, an illus-
trated example, and how queries are made against our index.

4.1 Definitions

Let O be a set of objects. A labeling function ` : O→ L associates a
label value to the objects of O. We can think of ` as an attribute in
a relational database. In connection with the level of detail discus-
sion above, if `1 and `2 are two labeling functions for O, we say `1 is
coarser than `2 or that `2 is finer than `1 if for any two objects o,o′ ∈O

the implication `2(o) = `2(o′)⇒ `1(o) = `1(o′) holds. We denote this
fact by `1 < `2.

A sequence of labeling functions c = [`1, `, . . . , `k] for objects O is a
chain for O if every labeling function is coarser than the next labeling
function in the sequence: `i < `i+1. The number of levels of a chain
is defined by levels(c) = |c|+1. An indexing schema for objects O
consists of a sequence of chains S = [c1,c2, . . . ,cn]. The dimension
of an indexing schema S is the length of its sequence of chains and is
denoted by dim(S). The multiplicity of a schema S is the product of its
chains’ number of levels: µ(S) = ∏n

i=1 levels(ci).
A full assignment for a sequence of labeling functions [`1, `2, . . . , `k]

is a sequence of label values [v1,v2, . . . ,vk] where vi is a label value
under `i. Any prefix of a full assignment for a sequence of label-
ing functions, including the empty one, is referred to as a partial as-
signment. Note that a full assignment is also a partial assignment
since a sequence is also a prefix of itself. An address on a schema
is a sequence of partial assignments for its chains, more formally, if
S = [c1,c2, . . . ,cn] is an indexing schema, then a = [p1, p2, . . . , pn] is
an address of S if pi is a partial assignment for chain ci. The set of
possible addresses of S is denoted by addr(S).

The addresses of an object o under indexing schema S, denoted by
addr(o,S) are all the addresses in addr(S) whose partial assignments
are consistent with the label values associated to o and it is easy to see
that the size of addr(o,S) is always µ(S). Besides a schema S, the
definition of a nanocube requires a separate labeling function, `time :
O→ T , which we refer to as the time labeling function since we use
it to encode the temporal aspect of our datasets. Thus, a nanocube for
objects o1, . . . ,on is denoted by:

NANOCUBE([o1, . . . ,on],S, `time)

A key in a nanocube is any pair (a, t) where a ∈ addr(S) and cor-
responds to a full assignment (see definition above) and t ∈ T is a
possible time label. If we remove the requirement of a being a full
assignment, we say that pair (a, t) is an aggregate key. Note that every
key is also an aggregate key. The set of all possible keys and the set of
all possible aggregate keys of a nanocube are respectively referred to
as its key space, or K?, and its aggregate key space, or K?

a . The size of
the key space, |K?|, is referred to as its cardinality.

4.2 Building the Index

To ease the remaining exposition, we assume that a nanocube maps
an aggregate key to a count. However, nanocubes support any kind of
summary that is an algebra with weighted sums and subtractions, and
thus works for any linear statistics, including means and variances.

The pseudo-code for building a nanocube is presented in Figure 3.
The main idea of the algorithm is for every object oi to first find the
finest address of the schema S hit by this object, update the time series
associated with this address and from there on update in a deepest first
fashion, all coarser addresses also hit by oi. Note that the content of
the last dimension of schema S is always a time series and that is why,
in line 21 of ADD, we insert the time label of the current object. The
important trick used is to, when possible, allow for shared links across
dimensions (dashed blue lines in Figure 2) and in the same dimension
(dashed black connections). In real use cases this sharing is responsi-
ble for significant memory savings and enables exploring even larger
datasets on small laptops. The functions not defined in the pseudo-
code should have its semantics easy to understand from its name.

bin: 1
accum: 2

bin: 3
accum: 3

bin: 4
accum: 4

bin: 6
accum: 7

bin: 10
accum: 9

A Summed Table Sparse Representation for Counts

query/tseries/1/3/4
start at bin 1, use buckets of 3 bins each, and collect 4 of these buckets

solve using...

3 4 0 2

result

0 1 2 3 4 5 6

event

7 8 9 10 11 12 time13

Fig. 6. An illustration of the summed-area table variant we use for our
time series indexing scheme. Every node in Figure 2 stores an array of
timestamped counts like the one in this figure.

4.2.1 Nanocube Example

Consider the scenario where an analyst is interested in understanding
the spatiotemporal distribution of Twitter data (i.e. tweets), includ-
ing which devices (e.g. iPhone, Android) people are using. Natural
questions to ask include: Which device is more popular for tweeting?
Is one device more popular in certain areas than in others? How has
this popularity changed over time? We illustrate the construction of a
nanocube built using Twitter data in Figure 2. For clarity, this example
contains only five tweets o1, . . . ,o5, all ordered in time.

As shown on the top-left map of Figure 2, the first two tweets (o1
and o2) were sent from the east coast of the United States; the third
tweet (o3), from South Africa; the fourth tweet (o4) was sent from
Asia, and the fifth tweet (o5) from Australia. Tweets o1 and o4 were
sent from an Android device while o2, o3, and o5 were sent from an
iPhone device. The labeling functions `device, `spatial1, and `spatial2
as well as the schema of this nanocube, S, are all defined on the
left part of this figure. The labeling `device assigns a device to each
tweet and `spatial1 and `spatial2 assign a spatial label to each tweet. The
tweet labels given by `spatial1 and `spatial2 are essentially addresses in a
quadtree partition of a square. Note that `spatial1 is coarser than `spatial2.
The right part of Figure 2 presents intermediate nanocubes generated
by NANOCUBE (Figure 3) after each tweet is inserted.

4.3 Querying the Cube

Nanocubes support three distinct dimension types, which are always
traversed in a fixed order: spatial, categorical, and finally temporal.
Before describing queries for each of these specific dimension types,
we first illustrate how simple queries are conducted on nanocubes us-
ing an example. Recall that the end result of the query will be to return
precomputed aggregates across one or more dimensions.

In Figure 2(5), assume we are interested in the count of all tweets
that occurred in the northwest quadrant of the world, regardless of
the device type and time. The aggregate key ka = ((p1, p2), t) for this
query consists of: (1) the partial assignment for the northwest quadrant
in the spatial dimension: p1 = [0,1]; (2) the empty partial path for the
device dimension p2 = [] indicating any device; and (3) a time label
t indicating any time. Finding the precomputed aggregate for a given
aggregate key is called a simple query. In this example, we start at
the top-most node and traverse all black parent-child links described
in the partial assignment p1: in this case only the black [0,1] link.
We next cross the dimension boundary line by traversing the (blue)
content link of the current node. The traversal process is repeated for
the device dimension using the partial assignment p2. In this specific
case, no restrictions are made on the device, and we can jump to the
next dimension by traversing the content link. At this point, we reach
a leaf node containing {o1,o2}. Since no time constraint is imposed,
the count of elements inside the leaf (2) is the answer for the query.

Note that, for each dimension, a simple query only traverses a sin-
gle path of its tree before jumping to the root node of a tree in the next
dimension (or to a leaf node which encodes time and is treated differ-

Fig. 7. Which device is more popular for tweeting: iPhone (blue) or An-
droid (orange)? This choropleth map highlights areas in which devices
are more popular based on a sample of 210M tweets. When we zoom in
to Chicago we can observe something not seen from the overview dis-
play: south and west of the city, Android is more popular than iPhone.

ently). In general, higher level queries might traverse multiple paths
of a single tree, and may also report single aggregates, multiple aggre-
gates, or even combine aggregates from multiple branches. To abstract
and classify how a general nanocube query processes a dimension, we
use the terminology of rollups and drilldowns (the ROLL UP relational
operation is related but has a different meaning than the one we intend
here). The dimension that is the basis of a rollup should report a single
aggregate value as a result. This aggregate might be a single exist-
ing aggregate in the nanocube or a combination of multiple aggregates
from different branches of that dimension. A drilldown reports ag-
gregate values for multiple branches in that dimension. In a single
nanocube query, each dimension is independently set to be used as the
basis for either a rollup or a drilldown. In Figure 5, we provide a set
of example queries and their mapping to the server query URL.

It is worth noting that the order of the d dimensions does not impact
the worst-case query run-time. For example, a marginal barchart of a
categorical dimension (with k bars), requires O(kd) time, regardless of
the category chosen or the ordering of the dimensions.

4.3.1 Spatial Queries

In our current implementation, the first dimension to be traversed in a
nanocube is always the spatial dimension. It is helpful to think of this
dimension as being represented by a traditional quadtree [27], where
each quadtree node is enriched by an extra pointer (content pointer)
that jumps to the next dimension of the nanocube. If a query matches
exactly the region represented by a quadtree node, then the content
pointer of that node is the gateway for all aggregates that refers pre-
cisely to that region. If the query includes categorical restrictions (or
drilldowns), then these can be found by traversing down the following
categorical dimensions, as described below. However, spatial regions
will very rarely match exactly one node in the quadtree; therefore, we
use the traditional region quadtree intersecting algorithms to compute
the minimal disjoint set of quadtree nodes that exactly cover the query
region [27], and sum the resulting rollups across the nodes.

Arbitrarily shaped regions are not currently supported for spatial
queries because of the additional complexity that is introduced, but
there is no major intrinsic barrier in the nanocubes framework which
prevents them from working. Instead, we support regions defined by
the tiling scheme of most mapping services on the WWW. For exam-
ple, the widest tile in the world in OpenStreetMap [15] has coordinates
(0,0,0), while a tile for block-level maps of downtown Los Angeles
might have coordinates (22485,52342,17). The first two coordinates
are integer addresses, and the third coordinate corresponds to the zoom
level: going down a zoom level doubles the resolution in both x and
y. Our spatial drilldowns are then specified by a tile (x,y,z) address
and an additional integer resolution, which denotes how many levels

A

9/11

Fig. 8. A history of American Airlines and Delta. The time series show
the weekly percentage of the number of commercial flights in the United
States. After 9/11 Delta (orange) saw a positive spike where American
(blue) saw a negative one. The big bump on American was the merger
with TWA. The heatmap shows the spatial hotspots of the two compa-
nies counting all flights after 9/11 (the time bar A can be dragged and
resized to change the considered time window for the heatmap).

to break down space inside the tile. Traditionally, tiles from mapping
services are squares with 256 pixels on the side, which corresponds in
our case to a resolution of 8. Since our spatial drilldowns return an
array of counts broken down by latitude and longitude, they are the
basis for spatial density plots and choropleth maps.

4.3.2 Categorical Queries
Categorical dimensions in a nanocube are represented by flat trees,
which always contain a root node with potentially as many children
as there are different values in that category. To restrict the domain
to a certain value of the category, the query engine simply follows the
path down the child of the corresponding value. Categorical rollups
are performed by simply returning the count corresponding to either
the top-level node (in case of no restriction) or the child node (in case
of a restriction). Categorical drilldowns are also similarly simple: they
are a sparse array of all children with non-zero counts.

We note that since categorical dimensions appear under spatial
dimensions, answering spatial region rollups with either categorical
restrictions or drilldowns requires combining the categorical rollups
across all quadtree nodes that are reached by the region. An analogous
phenomenon happens for nested drilldowns across multiple categories.
For example, the binned scatterplot in Figure 11 can be built directly
from the result of drilling down in both day of week and hour of day.
The recombinable parallel set visualization of Figure 1 requires a triple
breakdown of language, device and application. Single category drill-
downs also trivially enable histogram plots.

4.3.3 Temporal Queries
To represent the temporal dimension, we use a sparse variant of
summed-area tables [7] (Figure 6). Each time series in a node is stored
as a dense, sorted array of cumulative counts, tagged by timestamp.
With this data structure, we can compute a temporal rollup of event
counts along any contiguous period, using only two binary searches:
one to find the array element with the least upper bound of the period’s
beginning, and another to find the greatest lower bound of the period’s
end. The difference between these numbers is the total number of
events in the period. A temporal drilldown happens similarly, and we
can compute a time series with t entries by performing t + 1 binary
searches. Each determines the breaking points in the cumulative array,
and the final value is computed by stepwise differences.

This scheme for storing time entries is attractive for several reasons.
First, it ensures that we can store time series of any granularity with-
out requiring a nested tree structure like our spatial indexing scheme.
Second, the running time is essentially optimal (up to a logn factor),
and the algorithm is extremely fast in practice.

BA

Fig. 9. Two kinds of Customer Tickets: Type 1 (Red) and Type 2 (Blue).
The heatmap on the left map corresponds to time bar A, and the one on
the right to time bar B: both encode the difference between number of
reports of Type 2 and Type 1 in each point of the map. Reports of Type
1 exceed reports of Type 2, but not everywhere: notice that the region
of Denver is still blue. Zooming into Denver we see that the number of
Type 1 reports has increased over time, but Type 2 still dominates.

5 IMPLEMENTATION

We use a client-server architecture for the current implementation
of nanocubes. The server reads the multidimensional data, builds a
nanocube, and then processes queries on the nanocube from client
applications. The server is a C++11 template-based implementation
which makes it easy to plug in different data structures for each di-
mension of the nanocube. For example, for the Twitter data, we use
a 2d quadtree for the spatial dimensions (latitude and longitude), and
flat trees for each categorical dimension (e.g. language, device, appli-
cation), and our summed-area table variant for the time dimension.

The nanocube construction algorithm has not been optimized for
speed (results are included in section 6) but there are several possible
improvements that we could make: using multiple threads, or using
memory pools to avoid the overhead of repeated memory allocations
and deallocations. Due to the scale of the input data, most of our effort
has been spent on optimizing memory usage, including optimized li-
braries for memory allocation (libtcmalloc) and tagged pointers, which
allow us to use the 16 most significant bits in a 64-bit pointer to quickly
identify different types of nodes in our data structure.

The nanocube server exposes its API for queries via HTTP. More
specifically, it provides a web service by which queries can be is-
sued [26]. After the data cube is built, the data structures are no longer
mutated, and so the server is easily parallelizable (it also means that
nanocubes are add-only: they cannot be updated if a record is removed
from the base relation). Our implementation uses the Mongoose li-
brary for handling multiple HTTP requests in separate threads concur-
rently [21]. We have built two front-end visualization clients to query
the nanocube server. One client is written in C++ and uses OpenGL
for efficient rendering. The other client is browser-based and is written
in Javascript, HTML5, SVG, WebGL, and D3 [3].

6 EXPERIMENTS

To study the behavior of nanocubes, we collected six datasets that
ranged in size from four million records up to over one billion records.
Each dataset includes geospatial, temporal, and domain-specific cate-
gorical dimensions with up to 30 distinct values. For all but the syn-
thetic dataset experiments, we included the geospatial time-series di-
mensions, and varied the other dimensions based on the datasets.

In the following sections, we provide a brief overview of each of
the datasets, followed by an overall summary of our experimental re-
sults in section 6.8. For each of the experiments, we paid particular
attention to how much memory was required to build and store the
nanocube index, as well as the overall complexity of the dataset itself,

Fig. 10. Highlights of a visual analysis session of the CDR dataset, with 1,043,884,027 records. We noticed the different patterns in call volume by
interacting with the dataset and trying different regions and category selections. Notice the patterns occur at different spatial and temporal scales.

which varied greatly from one to the next. Once the nanocubes were
constructed, we queried them using one or both of our front-end clients
to highlight the ease with which analysts could explore the data.

The query times and bandwidth usage across all experiments are
consistent, so we report them in aggregate here. The mean query time
was 800µs (less than 1 millisecond) with a maximum of 12 millisec-
onds. The output size per query averaged 5KB, with a maximum size
of 50KB (geographical tiles dominated bandwidth usage). Our server
currently uses no compression, although we plan to support transpar-
ent gzip stream encoding. The mean number of queries for the C++
client was 100 requests per second. The HTML5 client is much qui-
eter, at around 1 query per second, since linked views are only updated
when a brush is released. The C++ client was designed for LANs, and
its bandwidth usage is around 5Mbps, well within current capacities.

6.1 Twitter
Between November 2011 and June 2012, we collected about 210 mil-
lion tweets that originated in the United States using Twitter’s public
feed which provides a representative sampling of all tweets. The rate
of tweets obtained averaged about one million per day. The data was
streamed in the form of JSON objects, from which we extracted the
following attributes: latitude and longitude of the device, the time the
tweet occurred, the client application used, the type of device, and the
language of the tweet. The categorical dimensions in our data (appli-
cation, device, language) had respectively 4, 5, and 15 distinct values.
With a nanocube built using this data, we could quickly explore the

data to better understand the areas in which one device is more pop-
ular than another, where each of the languages is most prevalent, and
how that information changes over time (see Figure 7).

6.2 Airline Commercial Flights History
This publicly available dataset contains data for every commercial
flight in the United States over a 20 year period (1987-2008) [2, 35].
For over 120 million flights, the records include the scheduled depar-
ture and arrival times, the actual departure and arrival times, the origin
and destination airports, the airline, and other fields. For this experi-
ment, we built our index using the origin airport (for latitude and lon-
gitude), scheduled departure time, the departure delay, and the airline.
This allows us to answer queries related to overall departure delays for
any airports, airlines, time of day, or combinations thereof. In Figure 8
we present an overview on the weekly percentages of total commercial
flights in the U.S. for a 20 year period of Delta and American Airlines.

6.3 Call Detail Records
For each cellular phone call, telecommunications companies collect
information about the call including time, duration, and the sequence
of cell towers that carried the call. This information is organized into
what are known as Call Detail Records (CDRs). A large U.S. service
provider (privately) shared with us over one billion CDRs generated
from a one month period in July 2010. Due to the sensitivity of CDR
data, our data has been completely anonymized. No personally iden-
tifiable information was gathered or used in conducting this study. To

Fig. 11. Selecting different geographical regions highlights how different
populations interacted with the Brightkite social network. While in the
US and UK there is no substantial difference between weekday and
weekend traffic, in Japan weekday usage is markedly lower.

the extent that any data was used, it was anonymous and aggregated
data. The nanocube was built using the geospatial temporal data (of
first cell tower), as well as the duration (transformed to a catagorical
dimension) of each call (see Figure 10).

6.4 Location-Based Social Networks
The next dataset is also publicly available, and consists of location-
based checkins in the Brightkite social network collected by Cho et
al. [6]. The dataset comprises all data checkins from the (now-defunct)
website between April 2008 and October 2010. In addition to lati-
tude, longitude, and the time of each checkin, we redundantly encoded
hour of day and day of week as extra categorical dimensions, since we
expected there to be interesting periodic day-to-day and weekday vs.
weekend patterns (see Figures 11 and 12).

6.5 Customer tickets
This dataset contains a record of about 8 million records of customer
interactions of a large U.S. service provider over a period of 2.5 years.
The dataset contains latitude, longitude, time and report type (one of
eight categories). The same measures taken to anonymize CDR data
in Section 6.3 were used here. In Figure 9, we highlight the use of
nanocubes to detect relative changes in category in the time series plot,
and how choropleth maps restricted to different time regions show the
change in geographical distribution of the report types.

6.6 SPLOM
This is a collection of synthetic datasets (each with five dimensions)
designed by Kandel et al. [17] to exercise data cube technology
(SPLOM stands for ScatterPLOt Matrix, the visual encoding used to
explore the dataset in that work), also used by Liu et al. [20]. To
compare resource usage to that of these other proposals, we built
nanocubes using five different bin sizes per dimension, from 10 to 50.

6.7 Memory Usage
To understand the memory requirements to build a nanocube, it is
important to remember that objects are not inserted directly into the
nanocube, but rather through their corresponding keys (see Figure 3).
An object’s key identifies the most specific bin in the nanocube that
contains that object. Thus, depending upon the resolutions defined for
the dimensions of a nanocube, two different objects may or may not
be distinguishable. For example, if the time resolution of a nanocube
is one hour, two objects with timestamps at 20h10m and 20h50m will
both have have keys with the same time label rounded to 20h. As
a result, new occurrences of keys that were already inserted into a
nanocube do not require additional storage space.

Fig. 12. By supporting multiscale time series queries, we can explore
the Brightkite checkin frequency to investigate global trends as well as
short-lived events. The iOS client for Brightkite was released exactly
when the upward spike happened. The downward spike was caused by
a global outage that lasted a few days.

Figure 14(A) shows the memory usage growth for the SPLOM
dataset as we insert from zero to one billion objects into the five
nanocubes of increasing bin size. In all cases there is an initial rapid
growth that quickly flattens out. In the case of SPLOM 50, the index
grew from 0 to 300MB with the first 200 million object insertions, but
grew less than 100MB larger as a result of the next 800 million object
insertions. The explanation for this behavior is that, by a characteristic
of the synthetic object generator (samples from a normal distribution
for each dimension) a key set of high probability was quickly gener-
ated making it harder and harder for a new object with an unseen key
to be generated. Thus, later in the process, most inserted objects will
not require more memory since their keys were already inserted into
the nanocube. We refer to this phenomena as key saturation.

In Figure 14(B), we present curves for memory usage and num-
ber of keys for the CDR dataset, both relative to the final nanocube
numbers. To test for a key saturation effect, we excluded the time di-
mension present in the original data. Once again, we observe an initial
rapid growth on memory usage explained by the large number of com-
binations of cell locations and call durations not yet inserted. Once
the bulk of the keys corresponding to these combinations are inserted,
a relatively small but steady rate of new keys are inserted reflecting a
small but steady growth in the cell tower infrastructure. Similarly de-
fined curves for the Flights dataset are shown in Figure 14(C). The first
part of this experiment follows the same trend as before: rapid initial
growth, followed by a saturation of keys and a steady but much slower
growth reflecting the small rate of new airport locations and carriers.
At about 80M inserted flights (circa 1995), we again observe a regime
of rapid growth, which corresponds to a burst of new carriers.

6.8 Performance Summary

In Figure 13, we summarize the relevant information for building our
nanocubes on the previously described datasets. The number of input
objects N, the memory requirements, and the build times are reported
in the first three columns, while the exact schema used for each dataset
is included in the last column. Column “size” indicates the number of
nodes in our data structure (in the nanocube of Figure 2(5) this number
would be 41: 22 circles + 19 entries in the leaves). The “sharing”
column indicates how much larger the nanocube would be without the
sharing mechanism (dashed lines in Figure 2). For example, the twitter
dataset nanocube would use at least 4× 46.4GB = 185.6GB without
sharing. Column “keys” is the number of distinct keys induced by
the N objects (note here that the time dimension is included). Finally,
column |K?| reports the cardinality of the key space of each nanocube.

dataset objects (N) memory time size sharing keys (|K|) |K?| schema
brightkite 4.5 M 1.6 GB 3.50 m 149.0 M 3.00x 3.5 M 274 lat(25), lon(25), time(16), weekday(3), hour(5)

customer tix 7.8 M 2.5 GB 8.47 m 213.0 M 2.93x 7.8 M 269 lat(25), lon(25), time(16), type(3)
flights 121.0 M 2.3 GB 31.13 m 274.0 M 16.50x 43.3 M 275 lat(25), lon(25), time(16), carrier(5), delay(4)

twitter-small 210.0 M 10.2 GB 1.23 h 1.2 B 3.72x 116.0 M 253 lat(17), lon(17), time(16), device(3)
twitter 210.0 M 46.4 GB 5.87 h 5.2 B 4.00x 136.0 M 260 lat(17), lon(17), time(16), lang(5), device(3), app(2)

splom-10 1.0 B 4.3 MB 4.13 h 51.2 K 5.67x 7.4 K 220 d1(4), d2(4), d3(4), d4(4), d5(4)
splom-50 1.0 B 166.0 MB 4.72 h 8.8 M 16.00x 1.9 M 230 d1(6), d2(6), d3(6), d4(6), d5(6)

cdrs 1.0 B 3.6 GB 3.08 h 271.0 M 18.60x 96.3 M 269 lat(25), lon(25), time(16), duration(3)

Fig. 13. Summary of resource usage for our reported experimental results (K=103, M=106, B=109). The numbers in parentheses on the schema
column denote the number of bits necessary to refer to a value of that dimension, and their sum is the exponent of 2 in the |K?| column.

All but two of the datasets fit in 4GB of RAM, and only one of them
would not fit in 16GB, the amount of memory in a high-end laptop.
The multiscale nature of spatiotemporal datasets make the cardinality
of the key space impractically large for any dense storage scheme.

7 DISCUSSION

As a sparse scheme to store aggregates, nanocubes suffer from the
same drawbacks of any sparse data structure. Namely, when the oc-
cupancy (i.e. key space covered by the inserted objects) is large, the
extra logic and memory needed to handle pointers is wasteful. A dense
mechanism, on the other hand, using implicit addressing on arrays has
simpler logic, faster access, and uses less memory. When consider-
ing multidimensional datasets, the memory requirements of a dense
mechanism quickly become impractical (see cardinality of Figure 13).
Except for the SPLOM experiments, every other dataset would require
at least 253 memory locations to represent only the finest bin sum-
maries (e.g. counts), without even considering the memory needed to
represent aggregates. This requirement is simply overwhelming. A
smart sparse scheme like nanocubes can handle well those datasets
with present day technology. Obviously, we cannot expect nanocubes
to solve the combinatorial explosion that happens when an arbitrary
number of dimensions is considered, but it pushes the size limits of
the multidimensional datasets for which we can have a smooth inter-
active visualization experience.

It is enlightening to compare nanocubes to recent data cube visual-
ization proposals: Datavore [17] and imMens [20] (see Figure 15). For
this discussion, we assume input objects inducing keys K and aggre-

Number of Objects Inserted

Na
no

cu
be

 S
ize

 in
 M

B

0m 200m 600m 1b

0

100

200

300

400

SPLOM 50^5
SPLOM 40^5
SPLOM 30^5
SPLOM 20^5
SPLOM 10^5

Number of Inserted Flights

Fr
ac

tio
n

of
 F

in
al

 V
al

ue

0M 25M 50M 75M 100M 125M

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Memory Usage
Number of Keys

Number of Inserted CDRs

Fr
ac

tio
n

of
 F

in
al

 V
al

ue

0M 250M 500M 750M 1B

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Memory Usage
Number of Keys

A

B

C

Fig. 14. (A) Nanocube memory usage growth with number of ele-
ments, using the SPLOM benchmark by Kandel et al [17]. Notice the
plateauing in memory usage due to key saturation. On the right, the
growth of memory usage and number of keys when inserting objects
into nanocubes for the Call Detail Records (B) and Flights (C) datasets.

gate keys Ka. Datavore’s algorithms behave well in the sparse regime,
but cannot handle very large datasets, because its querying time ap-
pears to be proportional to |K|. imMens, on the other hand, has ex-
tremely fast query times (below 1ms per query, and apparently O(1)),
but is designed for the dense regime, and uses memory proportional
to the cardinality of its key space, O(|K?|). This limits the size of the
key space and we observe that although imMens reports experiments
varying N from 106 to 109, the value of |K?| in all experiments were
within a factor of 5 of one another [20]. The hierarchical nature of
a nanocube’s spatiotemporal index provides advantages in the fidelity
of resulting visualizations for a much larger set of scales than imMens
(Datavore supports exact visual encodings across any dimensions, but
cannot cope with large-scale datasets). This same hierarchical nature
provides nanocubes with natural offscreen culling: the region visible
onscreen can be interpreted as a spatiotemporal selection, reducing the
total processing necessary.

Space Query Time Constraints
Datavore [17] O(|K| log2 |K?|) O(|K|) |K| ≤Main Mem.
imMens [20] O(|K?|) O(1) |K?| ≤ GPU Mem.
Nanocubes O(| f (Ka)|) O(1) | f (Ka)| ≤Main Mem.

Fig. 15. Comparison of observed asymptotic resource usage of recent
methods. Set K correspons to the input keys and set Ka to the aggregate
keys induced by K. Key space, K?, is a set that grows quickly with
resolution and number of dimensions. Function f reflects nanocube’s
sharing mechanism and has an important compression effect on the
already sparse set Ka (see sharing col. in Figure 13): | f (Ka)| ≤ |Ka|.

8 LIMITATIONS AND FUTURE WORK

Nanocubes offer efficient storage and querying of large, multidimen-
sional, spatiotemporal datasets, but are not without limits. Nanocubes
do not allow queries down to any individual record, like a traditional
database. Our index was designed specifically to answer queries from
interactive visualization systems that explore massive datasets

Our current server API encourages much chattier communication
than is necessary, peaking at hundreds of HTTP requests a second.
This happens when brushes are being moved in the C++ client, but
could be avoided by techniques like query queueing and prediction [5].

The current nanocube implementation allows for only one spatial
dimension and one temporal dimension. It would be clearly useful
to allow schemata that included multiple spatial dimensions so that
one could visualize, for example, the distribution of geographical loca-
tions of flights leaving a certain different geographical area. Similarly,
phone calls have two natural geographical dimensions.

Nanocubes still take more memory than we would like. We picked
one example to clearly demonstrate this: when indexing all six di-
mensions, the 210 million points from Twitter take around 45GB of
memory. This is enough memory for a present-day server, but above
that of typical laptops and workstations. We envision dynamic control
over the cardinality of dimensions, but leave that for future work. We
would also like to explore hybrid solutions that utilize both on-disk
and in-memory data structures to enable more complex nanocubes.

Acknowledgments We would like to thank Stephen North for
support throughout this project, Luciano Barbosa for processing the
Twitter dataset, and Jeff Heer for bringing imMens to our attention.

REFERENCES

[1] S. Agarwal, B. Mozafari, A. Panda, H. Milner, S. Madden, and I. Stoica.
Blinkdb: Queries with bounded errors and bounded response times on
very large data. In Proceedings of EuroSys, to appear. ACM, 2013.

[2] American Statistical Association Data Expo. Flights dataset, 2009.
http://stat-computing.org/dataexpo/2009.

[3] M. Bostock, V. Ogievetskey, and J. Heer. D3: Data-driven documents.
IEEE Transactoins on Visualization and Computer Graphics, 17(12),
2011.

[4] D. B. Carr, R. J. Littlefield, W. L. Nicholson, and J. S. Littlefield. Scat-
terplot matrix techniques for large n. Journal of the American Statistical
Association, 82(398), 1987.

[5] S.-M. Chan, L. Xiao, J. Gerth, and P. Hanrahan. Maintaining interactiv-
ity while exploring massive time series. In IEEE Symposium on Visual
Analytics Science and Technology, pages 59–66. IEEE, 2008.

[6] E. Cho, S. A. Myers, and J. Leskovec. Friendship and mobility: User
movement in location-based social networks. In Proceedings of SIGKDD.
ACM, 2011.

[7] F. C. Crow. Summed-area tables for texture mapping. SIGGRAPH Com-
put. Graph., 18(3):207–212, Jan. 1984.

[8] Q. Cui, M. Ward, E. Rundensteiner, and J. Yang. Measuring data ab-
straction quality in multiresolution visualizations. IEEE Transactions on
Visualization and Computer Graphics, 12(5):709–716, Sept. 2006.

[9] A. Das Sarma, H. Lee, H. Gonzalez, J. Madhavan, and A. Halevy. Effi-
cient spatial sampling of large geographical tables. In Proceedings of the
2012 ACM SIGMOD International Conference on Management of Data,
SIGMOD ’12, pages 193–204, New York, NY, USA, 2012. ACM.

[10] A. Dix and G. Ellis. by chance: enhancing interaction with large data sets
through statistical sampling. In Proceedings of the Working Conference
on Advanced Visual Interfaces, AVI ’02, pages 167–176, New York, NY,
USA, 2002. ACM.

[11] N. Elmqvist and J.-D. Fekete. Hierarchical aggregation for information
visualization: Overview, techniques, and design guidelines. IEEE Trans-
actions on Visualization and Computer Graphics, 16(3):439–454, May
2010.

[12] J.-D. Fekete and C. Plaisant. Interactive information visualization of a
million items. In Proceedings of the IEEE Symposium on Information
Visualization (InfoVis’02), INFOVIS ’02, pages 117–, Washington, DC,
USA, 2002. IEEE Computer Society.

[13] D. Fisher, I. Popov, S. Drucker, and m. schraefel. Trust me, i’m partially
right: incremental visualization lets analysts explore large datasets faster.
In Proceedings of the SIGCHI Conference on Human Factors in Com-
puting Systems, CHI ’12, pages 1673–1682, New York, NY, USA, 2012.
ACM.

[14] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart, M. Venka-
trao, F. Pellow, and H. Pirahesh. Data cube: A relational aggregation
operator generalizing group-by, cross-tab, and sub-totals. Data Mining
and Knowledge Discovery, 1(1):29–53, 1997.

[15] M. Haklay and P. Weber. Openstreetmap: User-generated street maps.
Pervasive Computing, IEEE, 7(4):12–18, 2008.

[16] J. M. Hellerstein, P. J. Haas, and H. J. Wang. Online aggregation. SIG-
MOD Rec., 26(2):171–182, June 1997.

[17] S. Kandel, R. Parikh, A. Paepcke, J. Hellerstein, and J. Heer. Profiler: In-
tegrated statistical analysis and visualization for data quality assessment.
In Advanced Visual Interfaces, 2012.

[18] D. A. Keim. Designing pixel-oriented visualization techniques: The-
ory and applications. IEEE Transactions on Visualization and Computer
Graphics, 6(1):59–78, Jan. 2000.

[19] J. LeBlanc, M. O. Ward, and N. Wittels. Exploring n-dimensional
databases. In Proceedings of the 1st conference on Visualization ’90, VIS
’90, pages 230–237, Los Alamitos, CA, USA, 1990. IEEE Computer So-
ciety Press.

[20] Z. L. Liu, B. Jiang, and J. Heer. imMens: Real-time visual querying of
big data. Computer Graphics Forum (Proc. EuroVis), to appear, 2013.

[21] S. Lyubka. Mongoose: a small and easy to user web server.
https://github.com/valenok/mongoose/.

[22] J. Mackinlay. Automating the design of graphical presentations of rela-
tional information. ACM Trans. Graph., 5(2):110–141, Apr. 1986.

[23] J. Mackinlay, P. Hanrahan, and C. Stolte. Show me: Automatic pre-
sentation for visual analysis. IEEE Transactions on Visualization and
Computer Graphics, 13(6):1137–1144, Nov. 2007.

[24] B. McDonnel and N. Elmqvist. Towards utilizing gpus in informa-

tion visualization: A model and implementation of image-space oper-
ations. IEEE Transactions on Visualization and Computer Graphics,
15(6):1105–1112, Nov. 2009.

[25] F. Olken and D. Rotem. Simple random sampling from relational
databases. In Proceedings of the 12th International Conference on Very
Large Data Bases, VLDB ’86, pages 160–169, San Francisco, CA, USA,
1986. Morgan Kaufmann Publishers Inc.

[26] L. Richardson and S. Ruby. RESTful Web Services. O’Reilly Media,
2004.

[27] H. Samet. Foundations of Multidimensional and Metric Data Structures
(The Morgan Kaufmann Series in Computer Graphics and Geometric
Modeling). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
2005.

[28] B. Shneiderman. The eyes have it: A task by data type taxonomy for
information visualizations. In Proceedings of the 1996 IEEE Symposium
on Visual Languages, VL ’96, pages 336–, Washington, DC, USA, 1996.
IEEE Computer Society.

[29] Y. Sismanis, A. Deligiannakis, Y. Kotidis, and N. Roussopoulos. Hi-
erarchical dwarfs for the rollup cube. In Proceedings of the 6th ACM
International Workshop on Data Warehousing and OLAP, pages 17–24.
ACM, 2003.

[30] Y. Sismanis, A. Deligiannakis, N. Roussopoulos, and Y. Kotidis. Dwarf:
Shrinking the petacube. In Proceedings of ACM International Conference
on Management of Data (SIGMOD), pages 464–475, 2002.

[31] Y. Sismanis and N. Roussopoulos. The polynomial complexity of fully
materialized coalesced cubes. In Proceedings of the Thirtieth interna-
tional conference on Very large data bases - Volume 30, VLDB ’04, pages
540–551. VLDB Endowment, 2004.

[32] I. Square. Crossfilter: Fast multidimensional filtering for coordinated
views, 2013. http://github.com/square/crossfilter.

[33] C. Stolte, D. Tang, and P. Hanrahan. Query, analysis, and visualization
of hierarchically structured data using polaris. In Proceedings of the 8th
ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pages 112–122, 2002.

[34] C. Stolte, D. Tang, and P. Hanrahan. Multiscale visualization using data
cubes. IEEE Transactions on Visualization and Computer Graphics,
9(2):176–187, 2003.

[35] H. Wickham. ASA 2009 data expo. Computational and Graphical Statis-
tics, 20(2):281–283, 2011.

	Introduction
	Related Work
	Data Cubes
	Nanocube: a Compact, Spatiotemporal Data Cube
	Definitions
	Building the Index
	Nanocube Example

	Querying the Cube
	Spatial Queries
	Categorical Queries
	Temporal Queries

	Implementation
	Experiments
	Twitter
	Airline Commercial Flights History
	Call Detail Records
	Location-Based Social Networks
	Customer tickets
	SPLOM
	Memory Usage
	Performance Summary

	Discussion
	Limitations and Future Work

