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Segmenting 
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Problem introduction
What do you do with an unknown and unexplored input?

How do you discover features of interest from it?

Object discovery



Object discovery
Unsupervised 3D segmentation

Voxel-level class prediction

Focus on biomedical data
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Granularity of segmentation
Many “correct” segmentations at different levels of semantic hierarchy 

Difficult to do unsupervised segmentation without base granularity



Coronavirus scans
Slice of 3D tomogram

How do we learn more about spikes on 
coronavirus particles?



Automated particle picking
RetinaNet to identify particles



Spike discovery

Our Model



Count spikes



Applications in 
Cryo-EM



CryoEM
Cryogenic electron microscopy

Allows for observation of biological specimens in their native environment at 
cryogenic temperatures

Produces high-resolution three-dimensional views of samples

Each voxel represents number of electrons

Abundance of undiscovered information



Imaging
Samples are imaged as they are tilted

Angle restricted by thickness

Series of 2D images are combined to produce a 3D 
reconstruction



Volumes

https://docs.google.com/file/d/17li6-t5rpgFGFrC6hyDUZkIP-7tJmqNi/preview


CryoEM process
Imaging 

Alignment

Reconstruction

Denoising

Particle identification

Model generation



Problem
For Cryo-EM

Identify molecular components within the crowded cellular environment

Large variation within each protein structure

Identified particles can be used to generate protein structure models

Can we 3d segment features of interests at different levels of hierarchy with no 

supervision?



Initial approach
VAE based probabilistic approach

Learn semantically relevant representation of sampled 3D volumes



VAE
Encoder retrieves feature representation

Downsamples input



VAE
Sample latent vector z

Learn to approximate true p(z|x) with encoder q(z|x)



VAE
Decoder reconstructs input from latent vector

Reconstruction ensures semantic features kept



Initial approach
Learn downsampled representation of input 



Probabilistic VAE pros
Can learn robust and generalizable representations

Can qualitatively visualize representations

Can create potential segmentations



Segmentation results
Use qualitative visualizations to measure performance

Utilize plotly to showcase sampled 3D visualizations after clustering



Representation space visualizations
Representation 𝛍 generated of dimension 64

Apply dimension reduction through PCA & uniform manifold approximation

Representation of nucleus & mitochondria & microtubules





Component analysis
Representation 𝛍 of dimension 3

Sliding window inference

Component should represent higher level 
feature information



Latent space reconstructions



Apoferritin 
Clustering on representation space

High sensitivity for apoferritin

Noise around detected instances

Incorrectly identified gold fiducials ‘X’s

https://docs.google.com/file/d/19S5YqVyED3Sp6w4DaDB2we9AdWoqvC7O/preview


Neuronal cells
Identified protein aggregate

Can visualize structure

https://docs.google.com/file/d/1oBD2JJrl_bynuy2YA8Vx33d_kpbeS15V/preview


Neuronal cells
Learning interesting structure

Difficult to capture semantic information

https://docs.google.com/file/d/1Nv1k72AGOkliBv7fweh1WLvpuYnquqg9/preview


Microtubules
Noise within segmentation

Requires post-processing



Process
Representation space

Component understanding

Segmentation for objects of interest

Need to learn more natural representation



Representation learning
How do we learn the most effective and natural form of representation 𝛍?



Hyperbolic 
representation 
learning



Preliminaries



Introduction to manifolds
A manifold M of dimension d is an object where the 
neighborhood of every point locally resembles 
d-dimensional Euclidean space (R^d)

Define a tangent space TzM for each point z on M

Think of a manifold as the generalization of a 2D 
surface to n dimensions



Riemannian manifolds
A Riemannian manifold is a manifold M 
with a metric g at every point x

The metric g allows us to locally define 
angles, distance, & area on M



Riemannian manifolds
Define the inner product at point z

Define a norm



Riemannian manifolds
From the matrix representation G define areas

The length of a curve                            is defined as 

Define the global distance on M as 

The shortest path connecting two points on a manifold is called a geodesic



Riemannian manifolds
Define the exponential map as



Riemannian Manifolds
Define the logarithm map as the inverse of the exponential map

Warning: the logarithm map doesn’t always exist!



Poincare ball model
The Poincare ball model is one of five equivalent 
models of constant curvature hyperbolic space

The Poincare ball has closed form equations for all 
quantities of interest

Formally the Poincare ball is defined as

The second term is the metric tensor

                     



Mobius addition 

Exponential map

Logarithm map 

Gyrovector operations



Method



Representation learning
Hyperbolic representations effectively learn hierarchical structure

Can embed tree-like structure in hyperbolic spaces with arbitrarily low error



Hyperbolic VAE
Unsupervised representation learning



Hyperbolic VAE
𝛍 = mean = representation

𝝈 = standard deviation

z = latent vector



Methods
Euclidean encoder with 3D convolutional layers to learn features

Dense layers output 𝛍 and 𝝈



Methods
Map 𝛍 into hyperbolic space through the exponential map

Apply softplus activation to 𝝈



Sampling
𝛍 and 𝝈 parameterize the hyperbolic variational posterior

Need to sample with hyperbolic 𝛍 and 𝝈 to get latent vector z

Wrapped normal and Riemannian normal as prior and posterior distribution



Riemannian normal
Distribution maximizing entropy given expectation and variance 



Wrapped normal
Push forward measure mapping normal distribution along the exponential map



Distributions on the Poincare ball
Both normal distributions are similar

Riemannian normal has slightly larger mode



Methods
Decoder uses gyroplane layer to map hyperbolic representation to Euclidean 

On the Poincare ball a gyroplane layer is defined as

With closed form distance equation as



Gyroplane convolutional layer
Encoder output 𝛍 is produced by 3D convolutional layers

Hence both 𝛍 and sampled vector z can be thought of a 3D volume

Each voxel is represented by a vector in hyperbolic space



Gyroplane convolutional layer
Define gyroplane 3D convolutional layer as the Euclidean 3D convolutional layer

Euclidean linear operation replaced by a gyroplane operation

Gyroplane layer is a hyperbolic affine transformation from Poincare ball to 
Euclidean



Methods
Decoder includes 3D up-convolutional layers back to input size



Hyperbolic VAE
Unsupervised representation learning



VAE Euclidean Objective
Goal is to learn true posterior of latent vector z given input x

Minimize KL divergence (information loss) between approximate posterior from 
encoder q(z|x) and true posterior p(z|x) 

Maximizing ELBO (evidence lower bound) minimizes KL divergence without p(x)



Hyperbolic ELBO Objective
ELBO

Reparameterization through hyperbolic polar change of coordinates

Details in Appendix of Continuous Hierarchical Representations with Poincaré 
Variational Auto-Encoders by Mathieu et al.



Hierarchical objective
Enforce relations in different levels of hierarchy

Hierarchical triplet loss samples anchor parent, positive child, and negative child 
motivated by the compositional hierarchy of 3D volumes



Hierarchical objective
Encourages the anchor patch (parent) and a sub-patch (positive child) to have 
similar representations

In hyperbolic space this has the interpretation of belonging to the same hierarchy

Anchor patch and a distant patch (negative child) to have dissimilar representation

Belonging to the different hierarchies

 



Hierarchical triplet loss



Loss



Experiments



Clustering
Retrieve representation of sampled patches from input volume through a sliding 
window

Perform hyperbolic kmeans

Use Hungarian algorithm for assignment



Evaluation



Biologically-inspired toy dataset



Prior approaches



Ablations



BRATS dataset
3D MRI scans of the brain

Annotated with tumors

Output tumor masks on volume

 



BRATS results



Prior approaches



Hierarchical segmentations
Can retrieve different levels of segmentations given one model



CryoEM



Questions?

Joy Hsu joycj@stanford.edu
Jeff Gu jeffgu@stanford.edu
Michael Zhang mzhang20@stanford.edu 
Serena Yeung syyeung@stanford.edu
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