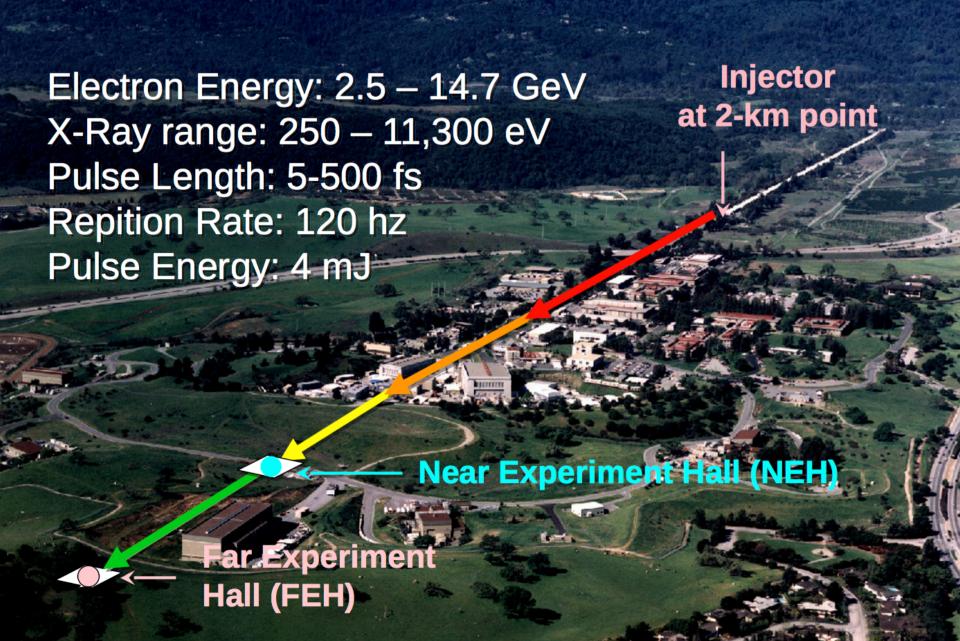
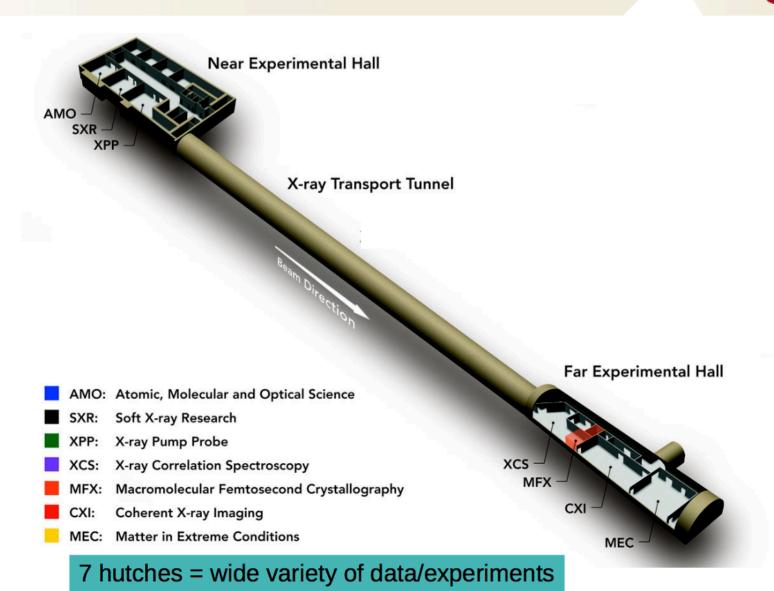
Machine Learning at LCLS Locating Detector Features.

David Schneider, davidsch@slac.stanford.edu

Linac Coherent Light Source

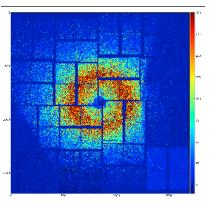


LCLS Experimental Floor

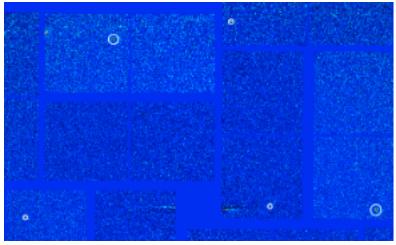


Detector Images

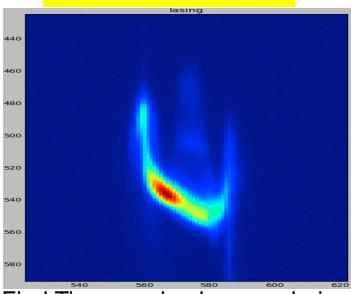
Sample/Shot Interaction



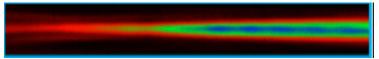
Find Bragg's peaks in a Diffraction shot at CXI



Shot Characterization



Find Time resolved power during a shot at AMO



Find delay between pump and probe during shot at XPP

Detector Features: Classification and Regression

SLAC

Shot characterization requires detailed *Image Processing* 1. Base –

LCLS provides many detector features (peak finders, GUI for tuning peaks, Time Tool)

1. Base –
energy
value at
which high
color lased

2. High color has lased

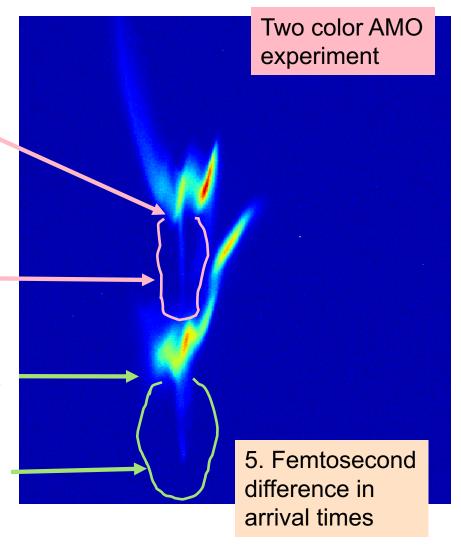
Problem: Experiments change.

New image processing is time consuming to develop

Under study: determining when *Machine learning* is more effective at shot characterization

3. Base - low energy

4. Low Present



Challenges with Machine Learning

SLAC

- Labels for Training data
 - LCLS data no simulator
 - 100k shots for a typical experiment
 - In contrast
 - HEP standard model
 - rich set of simulated data for supervised learning
- Processing LCLS Data
 - Large datasets megapixel images
 - Data format like binary XML
 - expensive to load event
 - detector corrections
 - Parse all the machine data
 - For ML, presently, make a copy to hdf5

Two Color AMO Experiment (R. Coffee et all)

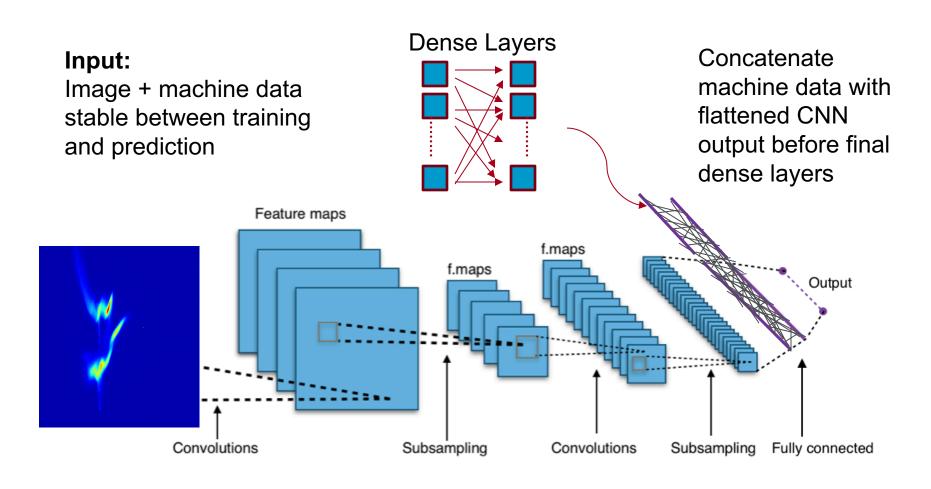
SLAC

Replaces Image processing with 1D Peak Finding Special detector: high/low energy lasing early/late peaks on spectrometer energy level – peak position Issue - same detector needed for sample/shot interaction Experiment: Training runs Detector used for shot characterization classification: 4 labels from peaks (neither, low, high, both) Regression: 2 energy values Molecular runs

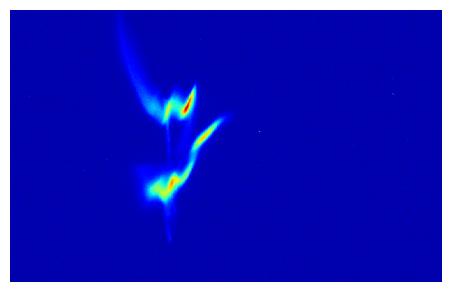
Predict shot (0,1,2,3, low/high energy) sort down to see structure

M. Mongia, R. Coffee, C.O' Grady, D. Schneider

SLAC



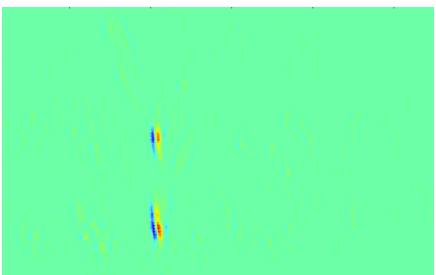
Guided Back Propagation for Feature Finding



Question: why did the Neural Network make it's choice? Will scientists trust these models?

Guided back propagation – intuition is you ask the network how to change the image to improve the prediction

Below – technique highlights exactly what is important



Locate Lasing from G. Backprop?

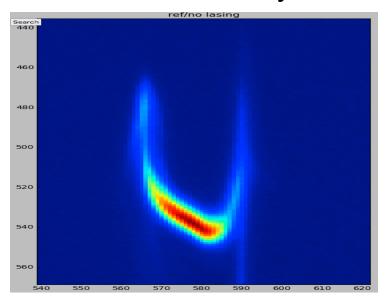
Still need femtosecond delay between lasing, not on spectrometer. Can we robustly get it from guided backprop?

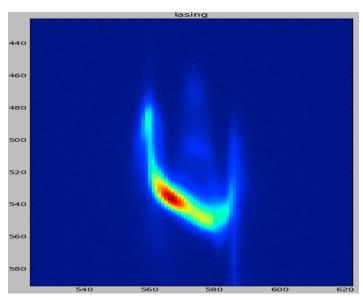
Machine Learning from Reference vs. Signal?

Special detector gave us 4 labels for machine learning May not generalize to other experiments

However – many experiments record:

reference runs to compare to signal runs
General XTCAV Analysis:





Reference vs. Signal, Saliency style Algorithms

SLAC

0/1 Classifier for Two color AMO experiment1 (high), 2 (low), 3 (both) -> 1 (signal)but old 1 (high) weaker signal (dataset not balanced)

Guided Backprop: no robust result with it yet

More recent, similar:

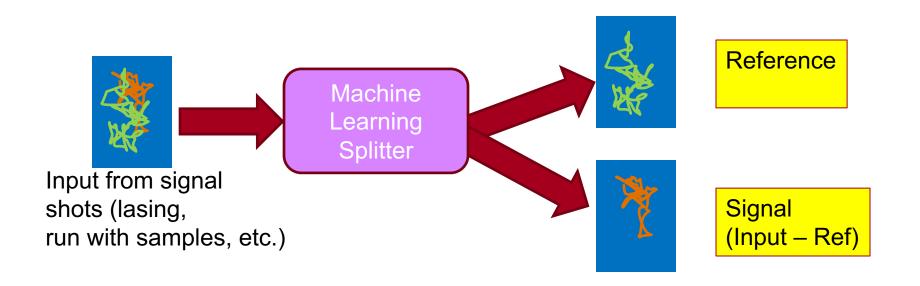
Relevance Propagation

(A. Binder, et all) 2016 Formulas tricky to implement for CNN's

Others: LIME, Grad-CAM

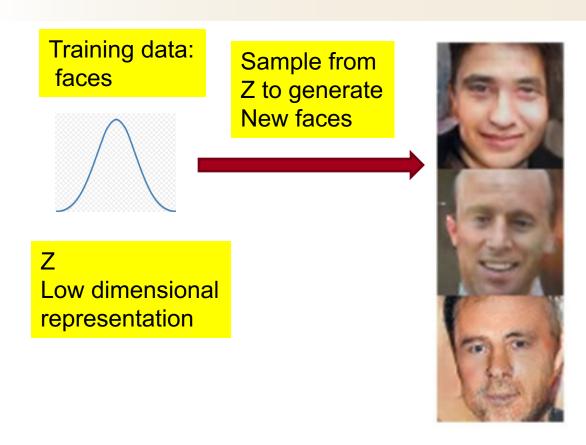


Can we generate the right reference from a signal shot?



May tie into machine learning area of *Generative Models*recent work such as *Adversarial Networks* or *Variational Auto Encoders*

Generative Models

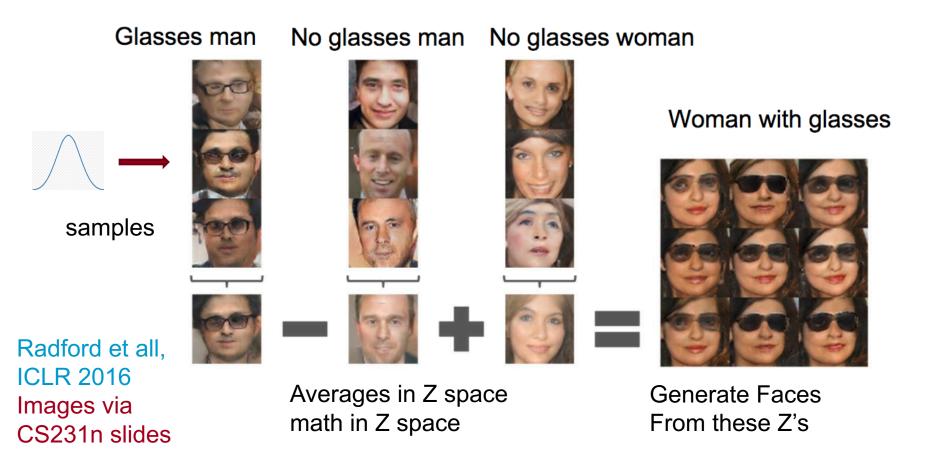


Radford et all, ICLR 2016 Images via CS231n slides

Generative Models: Vector Math

SLAC

Training data: faces



L=
Lasing average
In latent Z space

N=
No Lasing average
In latent Z space

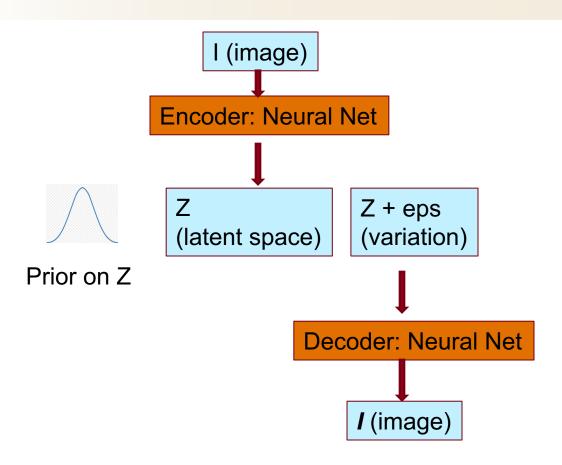
V = N - L could this remove lasing?

X =
Particular
Lasing shot
in latent Z
space

X+ V = magically, the right no lasing reference?

> Numerous issues, But idea is what applications of the representation in Z space are there?

Variational Auto Encoder (VAE)



Loss: two terms: image recovered: $(I - I)^2 -> 0$

latent space looks like prior: (KL divergence term)

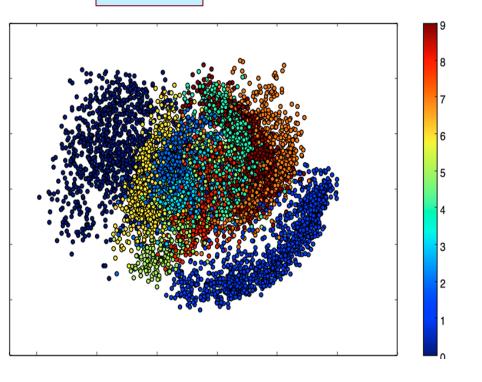
VAE on MNIST (from Keras Blog)

SLAC

I: 784 flattened pixels, values in [0,1]

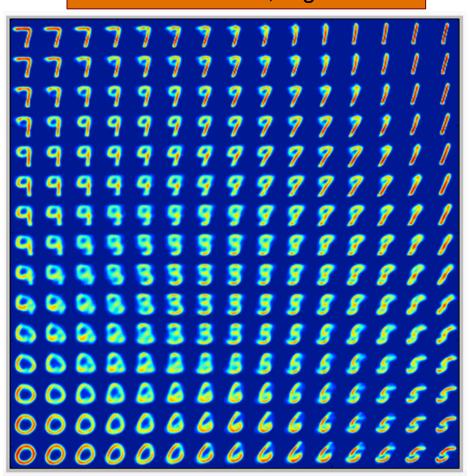
Encoder: One Dense Layer Relu Activation

Z: 2 dim



Z - interpolation

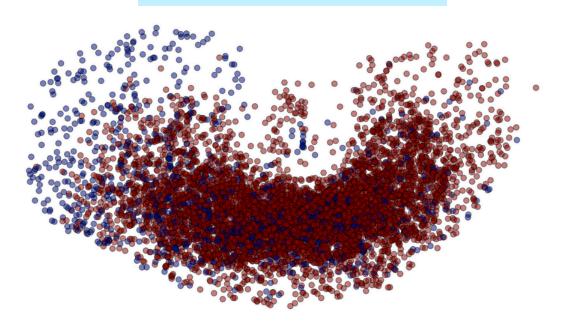
Decoder: Dense 2 -> 256, Relu Dense 256 -> 784, Sigmoid

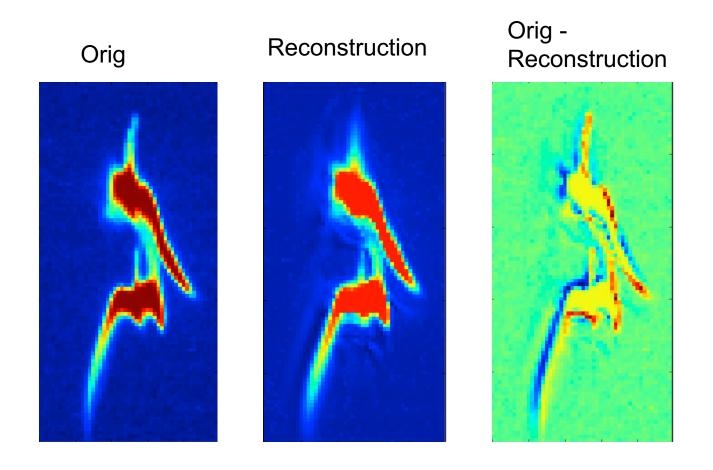


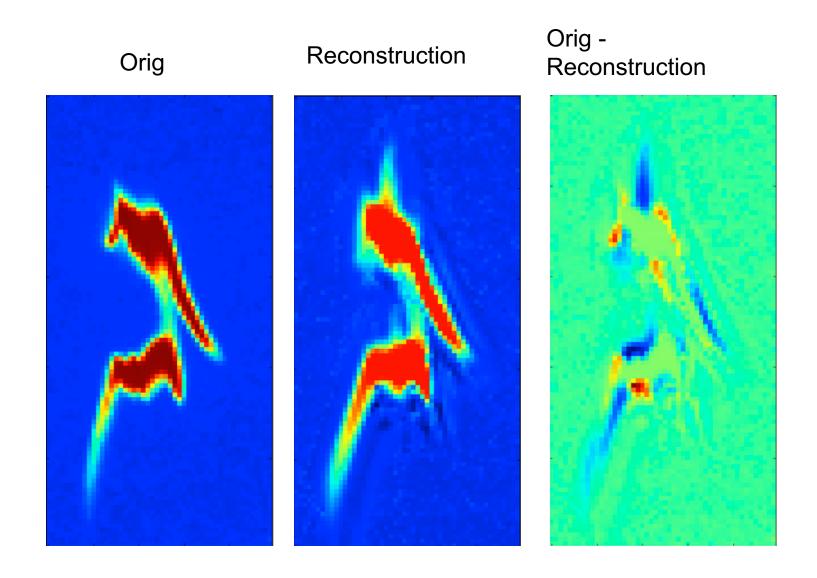
Reduce Images: 5000 pixels
728 x 568 -> 100 x 50
Log/Thresh at 300 ADU
center on horiz ROI

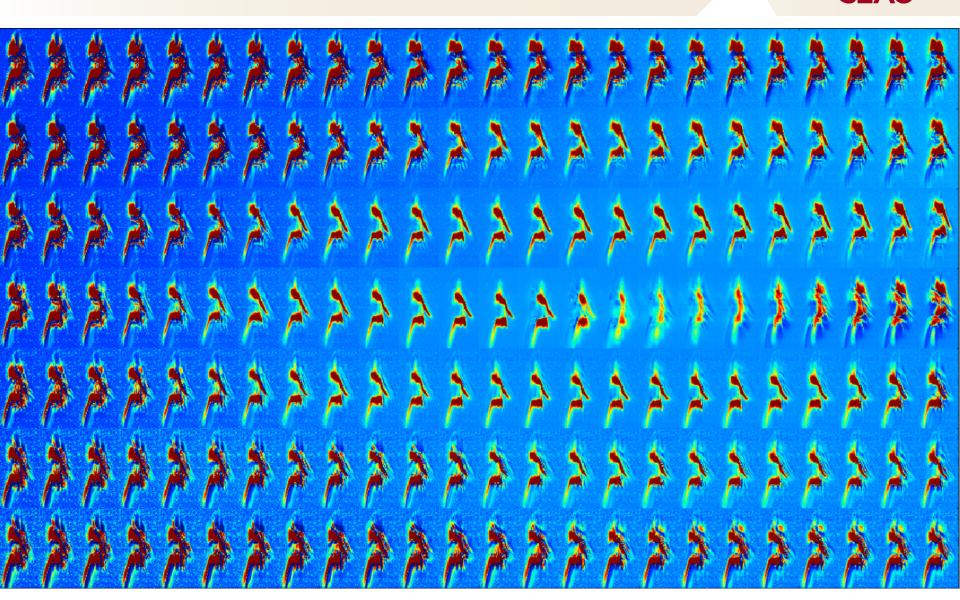
Encoder: two dense layers 5000 -> 256 -> 2
Decoder: two dense layers 2 -> 256 -> 5000

Latent Space
Z: 2dim – 6000 lasing (red)
1000 no lasing (blue)









Deep Learning Splitter Idea – train like a GAN

SLAC

```
I<sub>0</sub> (no lasing)
```

F (Nnet): I -> I

Generates correct reference from signal – removes Lasing -

(like the GAN generator, but no noise input)

 F_0

 F_1

D: (separate Nnet): discriminator: 4 way, I₀, I₁, F₀, F₁

Loss Terms:

D 4-way

D 2-way $0=(I_0, F_0, F_1)$ 1= I_1

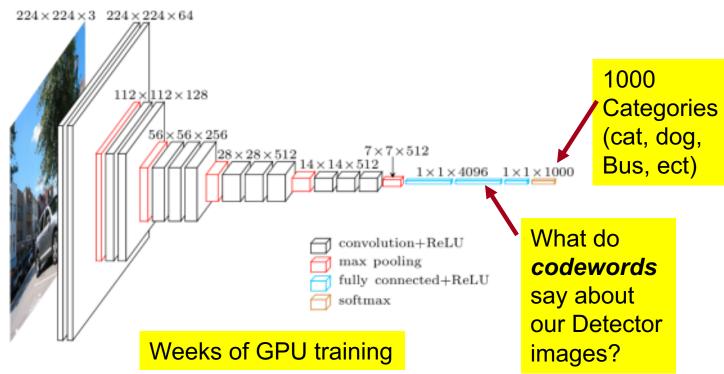
 $I_0 = F_0$ (don't alter no-lasing)

 $I_1 = F_1$ minimize changes to lasing to make it no-lasing but better, model physical process, conversation law? Etc.

Transfer Learning

Reuse award winning Network trained on ImageNet

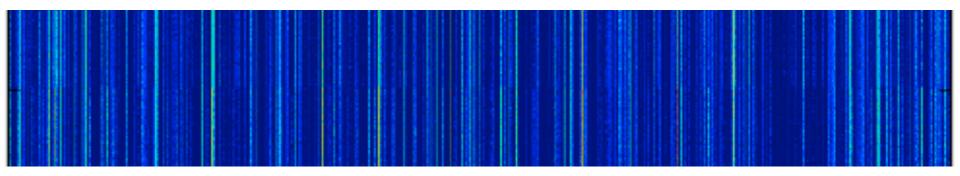
Millions of images



Vgg16 – from http://www.cs.toronto.edu/~frossard/post/vgg16/

Transfer VGG16 to XTCAV

- Take reference and signal runs of XTCAV
- Run Images of each through vgg16 to get codewords
- Top rows: reference, bottom: signal



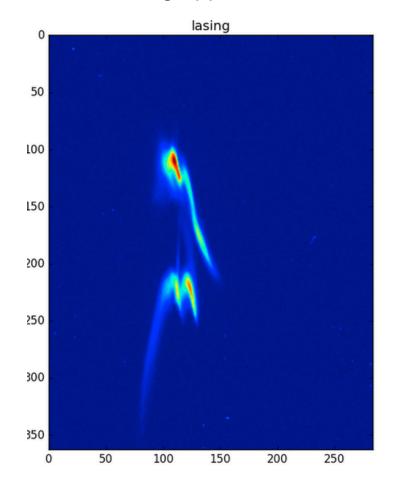
Features that distinguishes images (lasing electrons) are not spatially localized

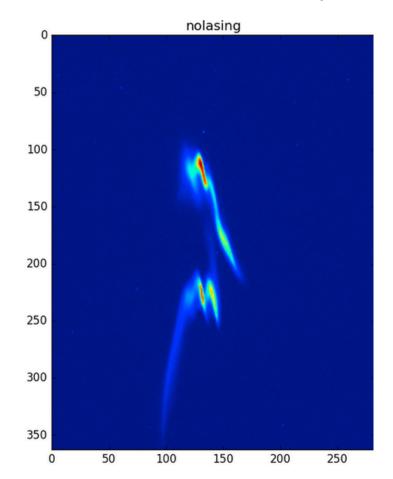
But in codewords – we see vector components that do

Possible Application: Look up Reference

XTCAV analysis – given *signal (lasing)* shot, find the corresponding *reference (no lasing)* shot (first step to isolate lasing).

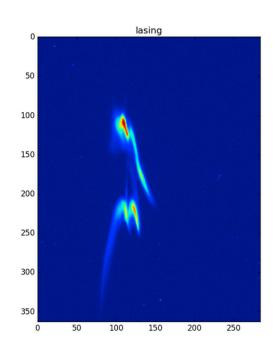
Transfer Learning approach: minimize Euclidean distance in codeword space

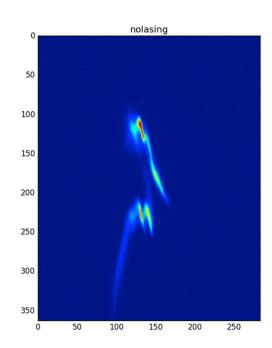


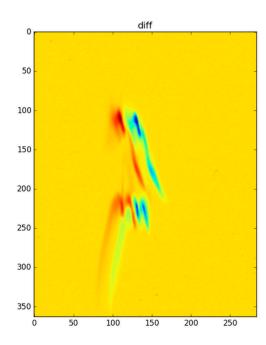


First Pass: Doesn't work well

subtract reference from signal in Image space, but they don't line up



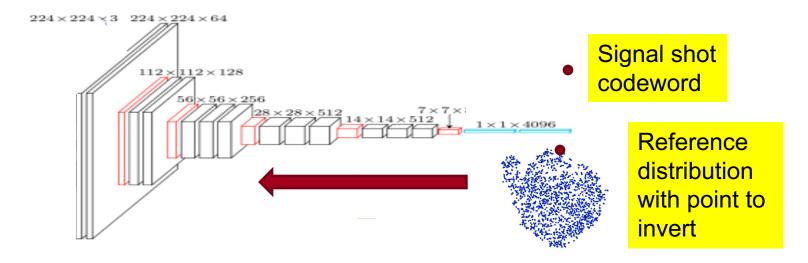




Can we invert a codeword to get the right reference?

SLAC

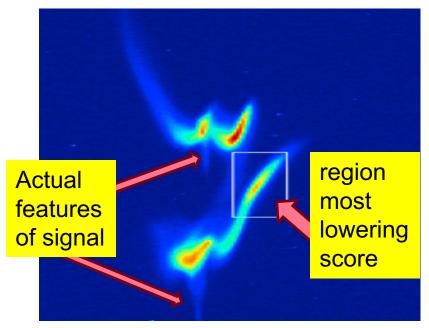
- Start with a reference codeword
 - close to signal
 - may not be for existing reference shot
- Optimization: invert through vgg layers
 - Has statistics of references for that layer
 - Is 'close' to the signal shot output for that layer



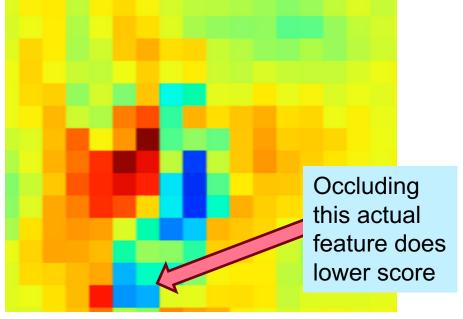
Occlusion – first pass – not working well

SLAC

Train classifier to discriminate *reference* from *signal* Occlude different spots of *signal* shot, classify each Want lowest score for *signal* when feature occluded



Signal shot before occlusion



Heat map: *signal score* as function of occluded region

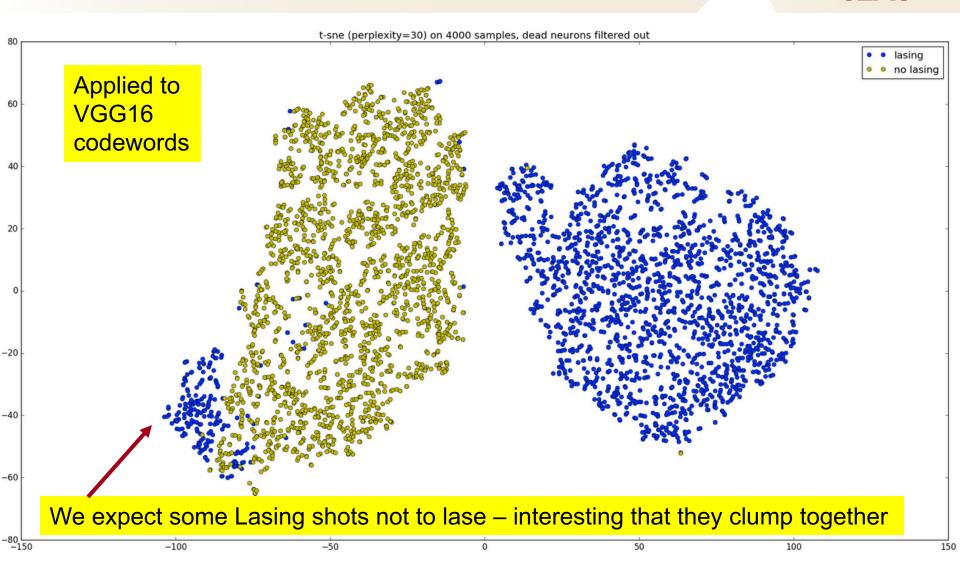
Occlusion – should it work?

Classifier

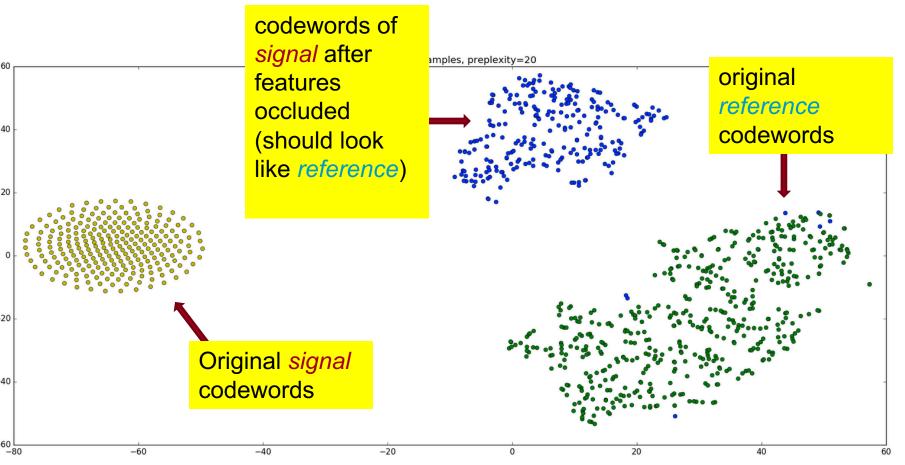
- trained on reference and signal
- Has never seen occluded images before
- Why would signal score for occluded 'do the right thing'?
- We will look at t-sne plots to evaluate
 - t-sne one of several techniques to embed high dimensional data in a low dimensional space

T-sne for XTCAV Images

SLAC

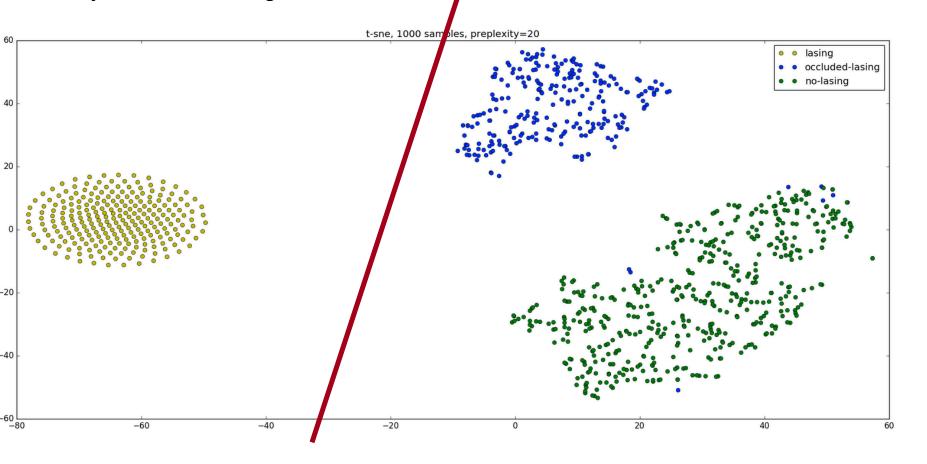


Depends on how good classifier is



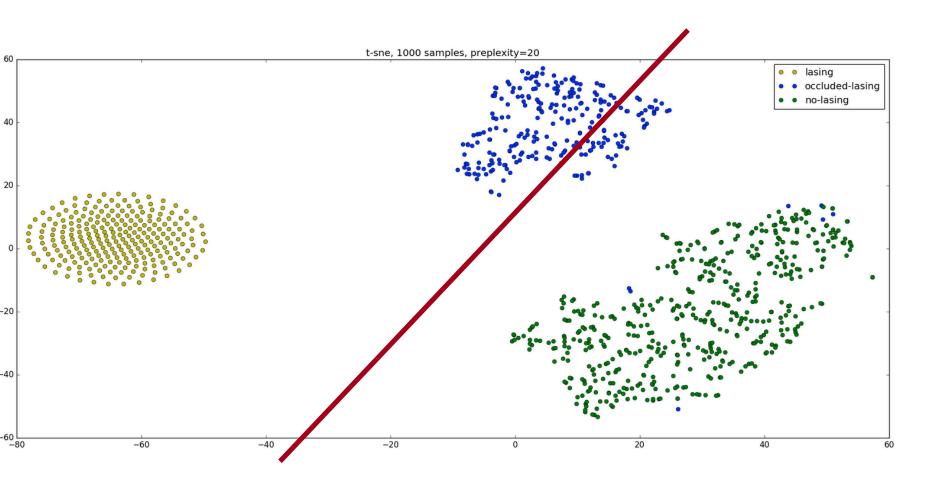
Depends on how good classifier is

Ideal Signal vs. Reference dividing line – occluded looks like reference Maybe SVM would give us this

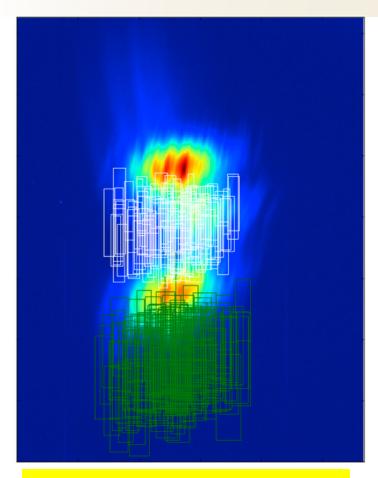


Depends on how good classifier is

Poor division for occlusion (still perfect for signal/reference classifier)

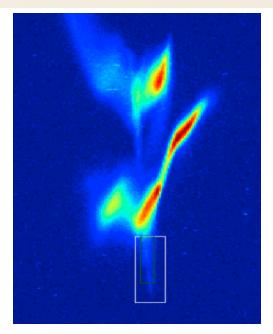


Label Boxes and Train Regression from Codewords



Label 250 images plot shows variation in labels

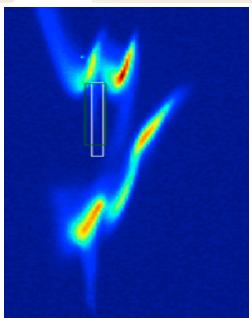
White: feature 1
Green: feature 2



First Regression: codewords to box for feature 2

Green: Truth

White: predicted

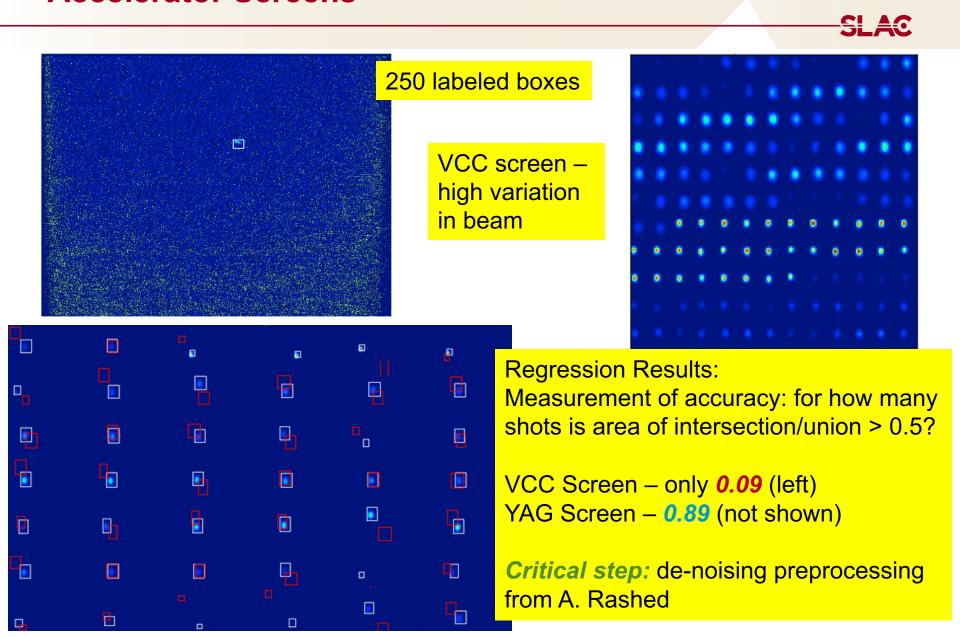


Second: codewords to box for feature 1

Green: Truth

White: predicted

ImageNet Convolutional Networks can Find Beams on Accelerator Screens



"DetectorNet" + "ImageNet"

SLAC

Transfer learning lesson: the neural Network trained on millions of ImageNet is effective for Detector Data

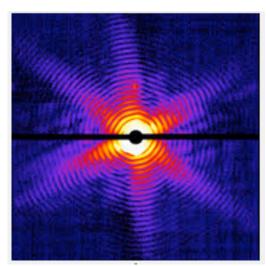
How much more effective if also trained on millions of detector images, from 1000's of categories like Diffraction of Molecule A, B, Beam Diagnostic C, etc?



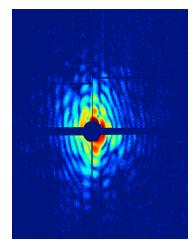
Image Captioning for Detector Shots?

SLAC

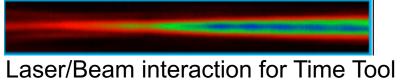
If we train a *Recurrent Neural Network* on detector images with captions, will the machine be able to write them in the future?

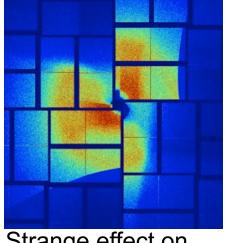


Great shot of mimi virus diffraction!



X-ray diffraction pattern produced by a cyanobacterium at the LCLS





Strange effect on a CSPAD