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Achieving optimal accelerator performance

1 An
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The process: The ideal scenario:
| desi All physics principles are known and included in the
Acce erai)r esign model. Optimization in design is thorough and complete.
Build the machine No mechanical (machining and alignment) and magnetic
according to design errors.
Set set-points to Calibration is accurate. Monitors are accurate. No
design values variation with time or environment.

L ]

Machine in reality <—— Machine as built is identical to the design.

However, the reality is never ideal.

Solutions: (1) Beam-based correction.
(2) Beam-based optimization (tuning).
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Beam based correction
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Beam based correction: correct the operating condition of a subsystem toward the
ideal (design) condition through beam based measurements and a deterministic
procedure.

Actuators | Diagnostics Deterministic Target
(knobs) (monitors) method

Orbit Orbit BPMs Orbit response Ideal orbit
correction  correctors matrix
Optics Quadrupole Beta, phase Response Design optics

correction correctors advance, orbit (Jacobian) matrix
response matrix

\ }
|

What if any of diagnostics, deterministic method, or ideal target is missing?
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Beam based optimization — tuning
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Beam based optimization (tuning): adjust the operating condition to optimize
machine performance directly.

X ——>( )
xZ% — fl(xlleI ;xn)
SyStem é fz(xl,xZ,...,xn)
X, ——>
n - J Performance
knobs measures

We know the system works — changing input leads to performance responses.
But we don’t know exactly how it works — the functions are unknown.

Machine tuning is a multi-variable and (potentially) multi-objective
optimization process. The function(s) is evaluated through the machine.
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Manual tuning vs. automated tuning

Manual tuning
Knob changing by human
hands, data processing
and decision making by

human brain.

Automated tuning
Knob changing, data
processing, and
decision making all by
computer.

Slow Fast
Human dependent Human independent
Limited to small problems Scalable to large problems

(few knobs)

Why isn't automated tuning popular yet, long after machines are
completely computer controlled?

Probably because of the lack of reliable, effective optimization algorithm.
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Challenges to automated tuning algorithms

* Noise — functions evaluated on machine have noise.
- Most of the traditional methods are designed for smooth functions.

« Efficiency
- Need to converge to the optimum fast.

« Safety, reliability, robustness

- Survive occasional outliers.
- Cause no disaster when machine mal-functions.

* (previous) Common auto-tuning algorithms

- Iterative 1D scan, Downhill simplex* Random *
te direction search (RCDS) is ideal for
Robust conjugate

automated tuning.
*L. Emery et al, PAC2003, implemented 1D scan and the downhill simplex method.
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The development of the RCDS algorithm

* The development was motivated by the need to optimize

storage ring nonlinear beam dynamics.

- Correction of nonlinear dynamics is difficult — lack of direct diagnostics,
deterministic method, and even target.

» Robust conjugate direction search (RCDS)* performs
iterative search over conjugate directions with a robust

(against noise), efficient line (1D) optimizer.
- The conjugate direction set may be updated with Powell's method.
- The 1D robust optimizer is designed to deal with noise.

*X. Huang, J. Corbett, J. Safranek, J. Wu, “An algorithm for online optimization of
accelerators”, Nucl. Instr. Methods, A 726 (2013) 77-83.
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Search over conjugate directions

— Efficient search directions: conjugate directions

)

A search over conjugate direction does not
invalidate previous searches.

Directions u and v are conjugate if

. u' ' H-v=0
with H being the Hessian matrix of function f(x),
_ 9%
by~ axiaxj'

Around the minimum
f(X, + AX) = f(Xy) +%AXT -H - Ax.

Inefficient search directions
Powell’'s method can update the directions

It fta_kes many tiny steps_ to get to the using past search results to develop a
minimum when searching along x and y conjugate set
directions.

*W.H. Press, et al, Numerical Recipes

*M.J.D. Powell, Computer Journal 7 22) 1965 155
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Anatomy of a line optimizer that is sensitive to noise

Line optimizer — Brent’'s method

Step 1: Initially bracketing the minimum.
Step 2: Successive interpolation to converge to the minimum.

_______ parabola through (1) (2) (3)

............... parabola through (1) (2) (@) /
f
:-I:, 1

Inverse quadratic interpolation (figure from Numeric Recipes*.)

With noise, the comparison of values in both steps can go wrong and the
algorithm won’t converge.

*W.H. Press, et al, Numerical Recipes
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The robust 1D optimizer
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The robust optimizer is aware of noise in bracketing and uses noise level to
filter out outliers. Noise level is detected before optimization.

-0.5¢ : : : o
O bracketing
v Afill-in
-0.67 — fitted |
® O new minimum
2
o A
2,
© \
Initial solution -
X. Huang et al, Nucl. Instr.
Methods, A 726 (2013) 77-83.
_0. t r r r r
-(?.06 -0.04 -0.02 0 0.02

a
Bracketing: step size is increased in the search. Bracket ends are higher than

minimum by 3 noise sigma.
Fitting: fill in additional points when necessary to better sample within the bracket

and then fit a parabola.
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Implementation of RCDS

- Parameters are bounded and normalized to [0, 1]

- Parameters in online optimization always have limited ranges.

- Keeping parameters within pre-defined ranges is a safety measure.

- Normalizing parameters makes algorithm code independent of actual
problems

* Powell's method of automatic updating of conjugate

direction set is implemented.
- In real life problems usually only a few directions are replaced before
terminating. So we hardly benefit from this procedure for online problems.

* The interface between the algorithm and a particular
application is the objective function and a simple setup
script.
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Testing the algorithm with a simulation problem

cr An

Testing problem: coupling correction for the SPEARS3 storage ring with skew

guadrupoles. o o
Objective: maximize beam loss over 6

seconds (Touschek loss rate « 1/a,).
Knobs: 13 skew quads

SF 8D

SD SF Setup: (1) errors are added to 42 skew

guadrupoles. Initially all 13 correcting
skew quads are off, with coupling ratio
of 0.9%.

(2) Noise level for loss rate is about
0.06 mA/min, with initial loss rate at 0.6
mA/min.

(3) Initial conjugate direction set is from
SVD of the Jacobian matrix of the orbit
response matrix w.r.t. skew quads.

QF QD BEND QFC BEND QD QF

Skew quadrupoles are
coils on sextupoles.

The SPEARS3 storage ring
] =UsvT

Each column in J is for a skew quad.
Conjugate directions are represented

by columns in V.
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Simulation results for three direct search methods

o1 AL
o b M\
POWELL SIMPLEX
—0.5 T L L L
- bH — ——runl 6s
R= N 1 . ——run2 6 .
& -1 runl 6s £ — un3 6S
< —— run2 6s s i
= u é — run4 no noise
\; -1.5¢F — run3 60s 1=
2 H run4 no noise g
3 2
g 7 ———
—2.5 2 . . . _3 r r r r
0 500 1000 1500 2000 0 500 1000 1500 2000
count count
05 RCDS (1) Showing history of the best solution.
' (2) The simplex method is efficient without
o 1 noise, but fails to reach the minimum with
—runl 6s ;
a2 6s noise. | | |
run3 6s - (3) Powell’s method works without noise, but
run4 no noise fails with noise. The initial direction set are

objective (mA/min)

1000 1500 2000
cnt
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0 500

individual skew quads.
(4) The RCDS method is efficient with or
without noise.

The performances of algorithms for noisy
problems depends on the problems.
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Detailed look of an RCDS run

skew quad K1 (1/m2)

(.|
- | =9
0 0.4
— all solutions ——all solutions
.M,M‘ L — best solutions — best solutions
s 03" _ solutions| |
o-1F | Distance to best solution in
2 L} = normalized parameters.
3 ‘“»w w X 027 P
g Lt I X
(@]
2 ]
: : ‘ MJ‘“ MMM
History of objective
-3 s ' ‘ s \ : '
0 200 400 600 800 0 200 400 600 800
count count
0.1

0.05 a
1 i Mww T S
lm“ e eore T T

0 \m lwm“m f | ;\ M\“ U‘ WWWWMMWWMW
m J MMWM [ v
-0.05
[
01 | History in parameter space
0 200 400 600 800

count

The algorithm converges fast but it does
not stay right at the minimum — it keeps
probing around.

So usually we need to sort the solutions
and apply the best one to the machine.
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Comparison of algorithm performances

Best performance for several algorithms

10

——RCDS
simplex — |
Powell i
— IMAT

——MOGA

coupling ratio
S
T LEEEEIEE] had T T T T

. History of best coupling ratio
10 0 500 1000 1500 2000

count

“IMAT”: iterative scan of each skew quad with the robust 1D optimizer.
The difference between “IMAT” and “RCDS” clearly shows the power of using
conjugate direction set for problems with highly coupled parameters.

Only "IMAT" and "RCDS" have steady gains foward the minimum - a
manifest of the noise-resistance feature of the robust 1D optimizer.
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Coupling correction experiments on SPEAR3 with RCDS
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Using loss rate (normalized) as objective
2-27-2013

0

1
e
W

1
—_—
T

-loss rate (mA/min)

—_
(9]
T

Using a,, from pinhole camera as objective
6-17-2013

70

sigmay (um)

'20 sb 160 Ltk 150 200 250 300
C 15 T T T T count
Beam loss rate is m o Skew quad strength / it 0.3 micron.
beam current chang | ‘ //

ads were off initially.

were taken at 500 mr

(no fitting). Noise si¢ Z ﬁé% N\ /

v 1 resolution is limited.

current (A)

—run 2-27-2013 -

\
Initially all 13 skew ¢ 1(5) // \ ///
/ v

At 500 mA, the best

-15 V

— run 3-26-2013
—run 4-23-2013

4.6 hrs. This was be
-20

——LOCO 2-13-2013 | |

—LOCO 4-23-2013
i

correction (5.2 hrs) 0 2 4 6 8

skew quad index

r
10 12 14
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Applications of RCDS on real-life problems

o1 A~

- SPEAR3

Kicker bump matching

Transport line optics

Transport line steering

GTL steering and optics

Injection efficiency w/ sextupoles X. Huang, J. Safranek, PRSTAB 18, 084001 (2015)

 LCLS
- Undulator taper optimization J. Wu, K. Fang, X. Huang, 2014-2016

« BEPC-II luminosity optimization
- Steering and coupling H. Ji, et al, Chinese Physics C 2015 Vol. 39 (12)
- Interaction point beta

 ESRF S. M. Liuzzo, et al, IPAC’'16, THPMRO015

- beam lifetime w/ sextupoles
- Injection steering

X. Huang, Online optimization algorithm,10/14/2016, at NAPAC'16
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Online dynamic aperture optimization for SPEAR3
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Dl N
100 1.2 . . . . . .
—H— original
80+ T —— optimized AT + il
% ) A '
P £ L v
@ o0f g ™ / ,
a= :; /
£ ® 0.6 # F{
'.%‘ 40l 5 / )
o ‘ 8 o04f o il
20 | O = /
85% kicker bump T7% kicker bump 02k
0 ' ' ' ' A
0 50 100 150 200 0 + | . ! !
solution 8 10 12 14 16 18 20

Optimizing injection efficiency with
reduced kicker bump.

Knobs: 8 sextupole knobs — each knob is
a pattern of 10 sextupole families that do
not change chromaticities.
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kicker bump (mm)

DA was increased from 15.1 mm to
20.6 mm by optimization.
Momentum aperture (MA) was not
affected.

X. Huang, J. Safranek, PRSTAB 18, 084001 (2015)
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LCLS taper profile optimization
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041-2612014 12:05:3 4 .I =
351 T T T T T T
CEMNEC (-0 1 _ 03 CE = 287261 ] - SGOET FEEL:SE2ENEC (-0 OFSSCa<M 4 S0 Z226ml == lmtlal
3.5k == best ||
|
| 3.49 _
3.48F !
M
3.47+ i
3.461 . . . . !
All solutions tried in first run.
3.4¢

LCLS Undulator Taper Configuration
3.51 M= -
3-5 i [ 23

34
\ H' ¥ R_— il
11:34AM, run2 began 3.48)

10:54AM, run1 began
' g 11:45AM, run2 ended. sa7l
11:26AM, run1 ended. -
OA40K 3:10h L1:20F 11 Zok 11:4CH AL SO 12:CO-w
o 3.46|
3.451 I
3.44} ]
3.43 [ sponth nefay: 13.450
No WakeFislds ICharge: 150.0 p
3.42 | GainTaper Peal rrent: 4250.0 A
PostSatTaper

1560 1 580 1 600 1620 1640 1660 1680

z [m]
Knobs: 4 parameters that control the taper profile, two phase shifters.
For U1-U8, and U10-U15: K; =K, (1 —a,j ) withj=1,...,15
For U17-U33: K;=K; [1 —a, (j - 16) — a, (j — z,)?] with j = 17,...,33.
Objective: FEL photon beam intensity. J. Wu, K. Fang, X. Huang, 2014
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SELF-SEEDING FEL OPTIMIZATION ..[
‘B 5.5 KeV Self-seeding FEL

hnnlean (x 1AR)

Recent result by Juhao Wu, 9/1/2016

LCLS Undulator Taper Configuration
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ESRF optimization of beam lifetime with sextupoles

N
u
T

N
(&)
T

Ly

=
o

lifetime [h]
=
wun

wn
T

Initial (May-2015)
Optimized (Sep-2015)

o
[

time
Lifetime for the 16-bunch mode in one month
before and after optimization.

sextupole strength
(normalized units)

100 200 300 400 500
evaluation count

Figure 2: Optimization of lifetime using 12 sextupole cor-
rectors in 7/8+1 mode.

Objective: lifetime normalized by current, bunch length,
and vertical size (average over 13 beam size monitors)

I BL(ly) 0y,0
H=T— _ |
"= "% BL(D) o S. M. Liuzzo, et al, IPAC'16, THPMRO15
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The usage of the Matlab RCDS code

- A Matlab RCDS package Is available, with instructions and
examples. A Python version has also been developed and is available.

* The setup for a new problem is extremely simple:

- Modify an objective function template
« Make changes to knobs and take measurement of performance
* Record data

- Modify a setup and launch script
* House keeping: record initial parameters, set parameter ranges
* Measure and specify noise level (only needed once)
* Launch RCDS
« Sort solutions and apply the best solution.

This test was performed very rapidly
thanks to the clear and user friendly implementation of the

RCDS Matlab code. --- S. M. Liuzzo, et al, IPAC’16

X. Huang, Online optimization algorithm,10/14/2016, at NAPAC'16
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Some comments on RCDS

« RCDS is not simply a variation of Powell's method

- Yes, RCDS is implemented as Powell's method with the new robust line
optimizer.

- But in online application one seldom benefits from conjugate direction update
because only limited directions are replaced.

- Itis the robust line optimizer that gives rise to the effectiveness of RCDS.

* RCDS is not simple iterative parameter scan

It works with combined knobs.

Parameter scan usually have fixed scan ranges and pre-determined, uniform
step sizes. Choice of step size (or # of steps) is problem dependent.

RCDS uses bracketing, variable step size, and quadratic fitting — a lot more
efficient.

RCDS algorithm does not need problem-dependent setup.

X. Huang, Online optimization algorithm,10/14/2016, at NAPAC'16
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A variant of RCDS to stabilize performance
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* We saw the need to stabilize performance for drifting
systems and developed and tested an RCDS stabilizer for it.

I (A), or fill rate (x10 mA/min)

X. Huang, Online optimization algorithm,10/14/2016, at NAPAC'16

1.5 -
] _| \ If.{vw"'-.' Infay A h '-'”:"'I'\I‘: W
| I\,I i :
| i, \
05 B f | ! | | | [ ]
| ~ M
I ] —n 1 -
0= el | | rl__. oL b |
- I ___|' - N I R S 1
J U | : | N
. . —h “
| I . no|
05 US| fill rate/10, mA/min - I
—— BTS-COR7(H)
1k BTS-COR6(V) |
— BTS-B8VY
3/12/2013, 22:27 BTS-B7H
4-5'*{ | | | | | | | | |
0 100 200 300 400 500 600 700 800 900
time (s)

1000

In this test the

stabilizer were tuning
four steering magnets
at the end of the BTS.

When upstream
steering magnets
were manually
changed, the
stabilizer responded
and brought injection
efficiency back.
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AutoTuner — An interactive GUI based on RCDS

o1 AL
= Ty o LA

* A GUI Is substantially easier to use — increased productivity
and reduced training requirements.

* The code is completely re-written to allow interruption.

n Auto Tuner -
Knoh 350
L Dol £ 200l ‘., AutoTuner has been
el £ tested on SPEAR3
v B2 % 200 and its injector with
Target rzl 150 F C many knObS.
| FuncT _SP3_KickerBum pXYrms "-"'I "
86.84 mm Pause (sec) 0.1 E 100 \
g:in 0 Max 5?0_5 o 05
alue et N Funck _SP3 _KickerBump_8v
,— Check Setup | Start | | Quit
Restare | | To Best |
It supports single knob (PV or function) and multi-knob
(combined knobs).
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Other algorithms - Genetic algorithm (NSGA-II)
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» Genetic algorlthm IS inefficient even without noise.

NSGA-I
0.4

—runl 6s
— run2 10s

— run3 no noise

S
)

objective (mA/min)
=
o0

1
[E—
T

L — ]
™~ clogged
-1.2

cnt

0 1000 2000 3000 4000 5000 6000

Same SPEAR3 coupling correction

| simulation problem.

Population: 100; Ran 60 generations; 10%
mutation, 90% crossover.

* Noise gives a bias to the selection operation.

6s loss rate evaluatlon tlme
0.02

ol s N0|se In the populatlon ]
1 as it evolves.

average error (mA/min)

0 10 20 30 40 50 60
generation

X. Huang, Online optimization algorithm,10/14/2016, at NAPAC'16

Bad guys (solutions with favorable
random errors) tend to enter the next
generation. This prevents converging to
the true minimum.

X. Huang et al, Nucl. Instr.
Methods, A 726 (2013) 77-83.
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Genetic algorithm and particle swarm algorithm
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Online coupling correction with genetic algorithm

2.5

(=]

T

' Genetic algorithm

“

Particle swarm algorithm

N
1

wn

(s

=

ol
N
o
=

[N
I
objective
’I_‘ 1
wn
S

normalized beam loss (count/mA?)

-200
0.5
J 2250 _ _
0F K. Tian, J. Safranek, Y. Yan, PRSTAB 1 Experiment by X. Huang, K. Tian (2014)
17, 029703 (2914) , , _ 300 500 1000 1500 2000 2500 3000
05, 2 4 6 8 10 cnt
_ Time(hr) _
Using beam loss monitor signal (low noise) as Same setup as the genetic algorithm
objective. It took 20,000 evaluations. experiment. It took 3,000 evaluations.

... while RCDS only took 200 evaluations (see slide 17) for a much noisier setup.

When online global search is desired, it seems the particle swarm algorithm is
a better choice: (1) more efficient; (2) no bias intfroduced by noise.
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The Extremum Seeking (ES)* method
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* The ES method is theoretically elegant.
pi(n+1) = py(n) + A/awy cos (wlaﬁ_ n ;L.(fr(.n)) The optimization parameters (knobs) are
n rotated with various frequencies and
pa(n+1) = pa(n) + A/aws; cos (wzﬁ.ﬂ- + F;C’(n)) amplitudes, and subject to modulation by

the cost function.
with C(n) = C(p(n). 1) +v(t) e

At the high frequency limit, the behavior approaches that of a gradient descent

method
dp(t)
dt

Pros: (1) noise is averaged out; (2) a simple and general framework; (3) can dynamically
track the optimum.

Cons: (1) algorithm control parameters are problem specific and need tuning;

(2) may not be as efficient as other direct search method (e.g. RCDS, simplex);

(3) Parameter update rate is bounded, but parameters are not.

*A. Scheinker, M. Krstic, IEEE Trans. Automatic Control, 58, 1107 (2013).
A. Scheinker, M. Krstic, Systems & Control Letters, 63, 25 (2014)
X. Huang, Online optimization algorithm,10/14/2016, at NAPAC'16
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Test of the ES method on SPEAR3*

SLACS
The problem: injection kicker bump matching ‘ SkewQuad - rer
Knobs: pulse amplitude, width, and delay of K1 and peen K,
K2, and two skew quads — 8 knobs total. Skew Quadf}"
Objective: residual oscillation of stored beam 5

Injected Beam

Kicker g

n Cost and Initial Adaptation (Normalized)
- I I | I | I |

Rt &fbjective

Stored Beam

turns

C=030, (256 turns)

lllustration by A. Scheinker,

3-25-2013, LE lattice

’ 25010 L
o 50 100 150 200 250 300 350 400 450 500 Po RCDS result
Step Number (n) 200 b
7 |® X. Huang, et al, NIMA 726
£ 1s0p ° (2013) 77-83
% 100F °o
g (@o o % o
sof 9990 o
%%@0 % S
*A. Scheinker, X. Huang, J. Wu, SLAC-PUB-16508 (2016) N s
0 20 40 60 80 100 1328
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ES — dynamic tracking of the objective
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In this test one parameter (K3 voltage, not an optimization variable) is varied, while
the ES algorithm serves as a feedback to make compensation.

Cost, Parameter Adaptation, and K 3 Magnet Change (Normalized)
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The ability to maintain performance with a drifting system is
important.

If there is no ES feedback

= 0 50 100 150 200 250 300
Step Number (n}
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Summary

1 AL

« Computer controlled systems can be optimized online
without a model or knowledge of system interior.

* The RCDS algorithm is a robust and efficient method for
online optimization, tested on many accelerator problems.

« Automatic tuning GUI and performance stabilizer based on
RCDS have been developed and tested.

* Other algorithms were also tested for online optimization.
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