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My Background
• Ph.D. in Computer Science from the University of Tennessee 

– National Science Foundation Graduate Research Fellowship 
to study evolutionary algorithms and spiking neural networks 

• Joined ORNL in 2015 as a Liane Russell Early Career fellow
– Project: Programming and Usability of Neuromorphic 

Computing
• 55+ publications in spiking neural networks and neuromorphic 

computing, 6 patents 
– A Survey of Neuromorphic Computing and Neural Networks 

in Hardware
• Joint faculty with the Department of Electrical Engineering & 

Computer Science at the University of Tennessee

• Co-founder of the TENNLab

• Department of Energy Early Career Award in 2019
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Why should you 
care about 
hardware?
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?

Looming End of 
Moore’s Law 

(And the end of Dennard scaling)

Artificial 
Intelligence 

and 
Machine Learning

Rise of the 
Internet of Things
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Neural Hardware and Neuromorphic Computing

Neural Hardware

Accelerates traditional neural 
network and deep learning 
computation

• Google TPU
• Intel Movidius Neural 

Compute Stick

• Well-suited to existing algorithms
• Fast computation or low power
• Currently deployed in cloud or 

mobile devices
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Neural Hardware and Neuromorphic Computing

Neural Hardware Neuromorphic Computing
Implements spiking recurrent neural 
network computation and can be 
suitable for neuroscience simulation

• Intel Loihi
• IBM TrueNorth

• Well-suited to existing algorithms
• Fast computation or low power
• Currently deployed in cloud or 

mobile devices

• Significant promise for future 
algorithmic development 

• Fast computation and low power
• Still in development

Accelerates traditional neural 
network and deep learning 
computation

• Google TPU
• Intel Movidius Neural 

Compute Stick 
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What is Neuromorphic Computing?

• Sequential processing
• Separated memory and computation
• Power intensive
• Programmed
• High precision

Von Neumann Architecture

CPU

Memory
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What is Neuromorphic Computing?

• Sequential processing
• Separated memory and computation
• Power intensive
• Programmed
• High precision

• Massive parallelization
• Collocated memory and computation
• Very low power
• Training or learning
• Low precision

Neuron

Synapse

Von Neumann Architecture Neuromorphic Architecture

CPU

Memory
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How do you program a neuromorphic computer?

Compiled

“Compiled”?

CPU

Memory
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How do you program a neuromorphic computer?

Compiled

“Compiled”

Spiking Neural Network!

CPU

Memory
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Traditional Artificial Neural Networks

Input Layer Hidden Layer Hidden Layer Output Layer
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Traditional Artificial Neural Networks

x1

x2

x3
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Traditional Artificial Neural Networks
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Traditional Artificial Neural Networks

u1

u2

u3

u4

f(W(1)x)=u
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Traditional Artificial Neural Networks

v1

v2

v3

v4

f(W(2)u)=v
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Traditional Artificial Neural Networks

o

f(W(3)v)=
o
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Spiking Neural Networks

• Time 
component on 
synapses

• More complex 
network 
structures

• Temporal input
• Temporal output
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Spiking Neural Networks
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Spiking Neural Networks
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Spiking Neural Networks
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Spiking Neural Networks
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Spiking Neural Networks
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Spiking Neural Networks
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Spiking Neural Networks
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Spiking Neural Networks
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Spiking Neural Networks
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Spiking Neural Networks
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Spiking Neural Networks
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Spiking Neural Networks
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Spiking Neural Networks
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Spiking Neural Networks
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Spiking Neural Networks
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Spiking Neural Networks
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Spiking Neural Networks
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Spiking Neural Networks
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Spiking Neural Networks
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Spiking Neural Networks
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Spiking Neural Networks
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Spiking Neural Networks
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Spiking Neural Networks
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Spiking Neural Networks



4242

Spiking Neural Networks
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How many neurons?

How many synapses?

What should the delays 
on each synapse be?

What should the weights 
on each synapse be?

What should the 
threshold or activation 

value be for each 
neuron?

How do you build (or train) a spiking neural network to 
solve a particular problem?
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How do you build a spiking neural network for a 
particular neuromorphic implementation?

• Different neuromorphic implementations have different:
– Neuron models (how the neuron functions, how many parameters)
– Synapse models (how the synapse functions, how many 

parameters)
– Levels of connectivity
– Devices and materials, which may radically change how the 

networks can function
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Example Neuromorphic Implementations

SOENmrDANNADANNA2

• Mixed analog-digital 
implementation

• Synapses implemented with 
twin memristors 

• Programmable 

• Optoelectronic 
• Neurons implemented using 

superconducting 
optoelectronics

• Delays are on neurons, not 
synapses

• Fully digital implementation
• Two versions: 

• DANNA2-dense is 
programmable

• DANNA2-sparse is 
application-specific

Mitchell, J. Parker, et al. "DANNA 2: Dynamic adaptive 
neural network arrays." Proceedings of the 
International Conference on Neuromorphic Systems. 
ACM, 2018.

Chakma, Gangotree, et al. "Memristive mixed-signal 
neuromorphic systems: Energy-efficient learning at the 
circuit-level." IEEE Journal on Emerging and Selected 
Topics in Circuits and Systems 8.1 (2018): 125-136.

Buckley, Sonia, et al. "Design of superconducting 
optoelectronic networks for neuromorphic 
computing." 2018 IEEE International Conference on 
Rebooting Computing (ICRC). IEEE, 2018.
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How do you build a spiking neural network for a  
neuromorphic system for a particular problem?

Not only do we have to come up with the right spiking neural 
network structure, that spiking neural network also has to work 

within the hardware constraints: architecture, device, AND 
materials.
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Evolutionary Optimization for Neuromorphic Systems 
(EONS)

Random 
Initialization

Parents

SelectEvaluate 
and Rank

Ordered Population

Best

Worst

Reproduce

Child 
Population
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Why Evolutionary Optimization?

• Applicable to a wide variety of tasks
• Applicable to different architectures and 

devices
• Operates within the characteristics and 

constraints of the architecture/device
• Can learn topology and parameters (not 

just synaptic weights)
• Can interact with software simulations or 

directly with hardware
• Parallelizable/scalable on HPC
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Applications of Neuromorphic Computing

• Scientific discovery
• Co-processor
• Large-scale data analytics
• Cyber security
• Autonomous vehicles
• Robotics
• Internet of things
• Smart sensors

Neuromorphic 
Application 

Characteristics

Spatio-
Temporal

Noisy
Input

Real-Time 
Processing

Multi-
modal

Low 
power

Not high 
precision

Requires 
robustness

Continuous 
Learning
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#4: Asteroids on DANNA 2 (FPGA/ASIC)
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Data from MINERvA (Main Injector Experiment for v-A)
• Neutrino scattering experiment at 

Fermi National Accelerator 
Laboratory

• The detector is exposed to the NuMI
(Neutrinos at the Main Injector) 
neutrino beam

• Millions of simulated neutrino-
nucleus scattering events were 
created

• Classification task is to classify the 
horizontal region where the 
interaction originated MINERvA Detector

Source: A. Terwilliger, et al. Vertex Reconstruction of Neutrino Interactions using Deep Learning. IJCNN 2017.
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Two Data Inputs Types (Three Views)
Deep Learning: Energy values as interpreted as pixels

Spiking: Time when energy deposition goes over a very low threshold
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Spiking Neural Networks
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Best Results: Single View
x-view 

(127x50)
conv

1 
(8x3)

pool
1 

(2x1)

conv
2 

(7x3)
pool2 
(2x1)

conv
3 

(6x3)
pool3 
(2x1)

conv
4 

(6x3)

pool
4 

(2x1)
fc1 

(196)

Convolutional Neural Network Result: ~80.42%

Spiking Neural Network Result: ~80.63%

dro
p 

out
fc2 
(98)

dro
p 

out
fc3 
(11) classification

Source for CNN results: A. Terwilliger, et al. Vertex Reconstruction of Neutrino Interactions using Deep Learning. IJCNN 2017.

• 90 neurons, 86 synapses

• Estimated energy for a single 
classification for mrDANNA
implementation: 1.66 μJ
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Example Application: Autonomous Robot Navigation

• Task: Navigate and explore an unfamiliar 
environment while avoiding obstacles 

• Challenges: 
– No explicit instructions on how to operate
– No prior knowledge about the environment
– Limited input resolution (LIDAR sensors)
– Process all inputs and make control 

decisions on-board the robot (no 
communication to/from the robot to another 
computer system)

– Train only in simulation
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Application: Robotics Control Results

Student Application: Parker Mitchell and Grant Bruer (Spring 2017)
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Application: Robotics Control Results

Student Application: Parker Mitchell and Grant Bruer (Spring 2017)
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Summary

• The future of AI is likely to include custom hardware like neural 
hardware and neuromorphic computing

• Neuromorphic computing systems are non-trivial to program
• We’ve developed a spiking neural network training methodology 

based on evolutionary optimization that has been applied to multiple 
implementations and many applications

• Now is the time to get involved!
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Interested in Learning More about Neuromorphic?
“A Survey of Neuromorphic Computing and Neural 

Networks in Hardware”
https://arxiv.org/abs/1705.06963
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Work supported by:

neuromorphic.eecs.utk.edu

Department of Energy

Air Force Research Lab
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Thank you!

Questions?
Contact:

Email: schumancd@ornl.gov

Website: catherineschuman.com

Twitter: @cdschuman



Non-Traditional Input 
Encoding Schemes for 
Spiking Neuromorphic 
Systems
• IJCNN 2019

• In collaboration with Jim Plank, Grant 
Bruer, and Jeremy Anatharaj from UT
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Key Challenge: Input Encoding

Spiking neural networks 
require spikes over time 

as input
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Key Challenge: Input Encoding

Numerical Input Data

0.7 0.4 -0.3

How do you 
convert 

numerical data 
into spikes?
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Common Approaches

Rate Coding

Temporal Coding

0.6

0.3

0.6

0.3
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Common Approaches

Rate Coding

Temporal Coding

0.6

0.3

0.6

0.3

Key Issue: 
Limited input resolution for real-time 

processing applications
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Proposed Input Encoding Schemes

• Motivation: Develop encoding schemes that:
– Can be applied to a wide variety of input data types
– Can represent single input values over a very short period of time so that they 

can be applied to real-time classification or control tasks

• Encoding schemes:
– Binning
– Spike-count
– Charge-injection
– Complex encoding schemes

• Combining binning, spike-count, and charge-injection encoding to form more complex 
calculations

Assumption: For a given input k, 
we assume that all possible input 
values fall in the range mk to Mk
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Key Observations

The encoding scheme chosen has an impact on application performance.
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Key Observations

The encoding scheme chosen has an impact on application performance.
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Key Observations

The appropriate encoding 
scheme depends 
primarily on the 

application, rather than 
the implementation.



Multi-Objective 
Optimization for Size and 
Resilience of Spiking 
Neural Networks
• IEEE Ubiquitous Computing, 

• In collaboration with Mihaela Dimovska
(University of Minnesota), Travis 
Johnston, Parker Mitchell, and Tom 
Potok
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Size Optimization: Pruning Post-Training
• Strategy: Prune internal neurons with low spiking frequency

PB Radio Asteroids

Average 
number of 
internal 
neurons

9.36 77.8 75.09

Average 
number of 
synapses

32.61 139.19 438.18

Average 
performance

292.2 0.777 214.9

PB Radio Asteroids

Average 
number of 
internal 
neurons

2.43 4.97 35.24

Average 
number of 
synapses

21.53 62.52 35.24

Average 
performance

288.7 0.778 208.3
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Size Optimization: Multi-Objective for Size
• Strategy: Adjust the training fitness function to include minimizing 

size as an objective 
PB Radio Asteroids

Average 
number of 
internal 
neurons

9.36 77.8 75.09

Average 
number of 
synapses

32.61 139.19 438.18

Average 
performance

292.2 0.777 214.9

PB Radio Asteroids

Average 
number of 
internal 
neurons

5.08 0.56 1.3

Average 
number of 
synapses

23.41 122.9 147.17

Average 
performance

297.5 0.788 235.22
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Multi-Objective Optimization for Resiliency

Weighting factor
Score Size multiplier Weighting factor Average of scores of 

perturbed networks
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Multi-Objective Optimization for Resiliency



Island Model for Parallel 
Evolutionary Optimization 
of Spiking Neuromorphic 
Computing
• GECCO 2019

• In collaboration with Jim Plank (UT), 
Robert Patton, and Tom Potok
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Scalable Island Model
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Scalable Island Model

• Islands with communication 
saw consistently better
results in the same amount 
of time on the same 
computational resources as 
islands without 
communication

• More resources generally 
lead to better results faster 
(with the right 
hyperparameters).
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Scalable Island Model: Hyperparameters Matter
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Scalable Island Model: Hyperparameters Matter


