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My Backgrounad

Ph.D. in Computer Science from the University of Tennessee
— National Science Foundation Graduate Research Fellowship

to study evolutionary algorithms and spiking neural networks
Joined ORNL in 2015 as a Liane Russell Early Career fellow %%
— Project: Programming and Usability of Neuromorphic | |
Computing T E N N LAB
. , - , NEUROMORPHIC
55+ publications in spiking neural networks and neuromorphic ARCHITECTURES. LEARNING. APPLICATIONS,

computing, 6 patents

— A Survey of Neuromorphic Computing and Neural Networks
iIn Hardware

Joint faculty with the Department of Electrical Engineering &
Computer Science at the University of Tennessee

Co-founder of the TENNLab
Department of Energy Early Career Award in 2019
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Why should you
care about
hardware?
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Artificial
Intelligence
and
Machine Learning

Rise of the
Internet of Things ‘

Looming End of
Moore’s Law

(And the end of Dennard scaling)
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Neural Hardware and Neuromorphic Computing

Neural Hardware

Accelerates traditional neural
network and deep learning
computation

« Google TPU
* |Intel Movidius Neural
Compute Stick

» Well-suited to existing algorithms

« Fast computation or low power

« Currently deployed in cloud or
mobile devices
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Neural Hardware and Neuromorphic Computing

Neural Hardware Neuromorphic Computing
Accelerates traditional neural Implements spikin.g recurrent neural
network and deep learning network computation and can be
computation suitable for neuroscience simulation

. Intel Movidius Neural * IBM TrueNorth

Compute Stick

« Well-suited to existing algorithms « Significant promise for future

« Fast computation or low power algorithmic development

« Currently deployed in cloud or « Fast computation and low power
mobile devices « Still in development
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What is Neuromorphic Computing?¢

Von Neumann Architecture

Sequential processing

Separated memory and computation
Power intensive

Programmed

High precision
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What is Neuromorphic Computing?¢

Von Neumann Architecture Neuromorphic Architecture

Neuron—— 1 [ [— [ 1 —

Synapse ——| | | | | | | |

Massive parallelization
Collocated memory and computation
Very low power

Sequential processing
Separated memory and computation
Power intensive

Programmed Training or learning
High precision Low precision
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How do you program a heuromorphic computere

. Comp"ed
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How do you program a heuromorphic computere
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Spiking Neural Network!
¥ OAK RIDGE
-~ National Laboratory




Traditional Artificial Neural Networks
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Traditional Artificial Neural Networks




Spiking Neural Networks

e Time
component on
synapses

 More complex
network
structures

e Temporal input
e Temporal output
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Spiking Neural Networks
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Spiking Neural Networks

*OAK RIDGE
National Laboratory




Spiking Neural Networks

ional Laboratory




Spiking Neural Networks
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Spiking Neural Networks
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Spiking Neural Networks
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Spiking Neural Networks
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Spiking Neural Networks
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Spiking Neural Networks
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Spiking Neural Networks
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Spiking Neural Networks
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Spiking Neural Networks
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Spiking Neural Networks
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Spiking Neural Networks
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Spiking Neural Networks
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Spiking Neural Networks
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Spiking Neural Networks
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Spiking Neural Networks
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Spiking Neural Networks
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Spiking Neural Networks
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Spiking Neural Networks
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Spiking Neural Networks
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Spiking Neural Networks

o
A

) 1M
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How do you build (or train) a spiking neural network 1o
solve a particular problem®e

What should the weights

How many neurons? on each synapse be?

How many synapses?

What should the
threshold or activation
value be for each

?
What should the delays neuron:

on each synapse be?
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How do you build a spiking neural network for o
particular neuromorphic implementatione

 Different neuromorphic implementations have different:
— Neuron models (how the neuron functions, how many parameters)

— Synapse models (how the synapse functions, how many
parameters)

— Levels of connectivity

— Devices and materials, which may radically change how the
networks can function
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Example Neuromorphic Implementations

DANNA2 MrDANNA SOEN

P:ograrnmmg ! Oe'Iay ! setswy 0 T T T TTT T TTTEOTTEEEES \
ce er Synapse | “SPD = nTron/ 1
T = Tabl ‘ E. B : ‘f‘ (_hr:ﬁhold I
' 'R’ '+ |l O Hhandll ::;;_"E
el o | o | m : F e
= e W bl iy
v 4 ""H““dA
o F%m 4 e | o Fo(:“::rrgieng o ‘-‘tl'l”lpl“l.‘f bias
R;m , . Compat'e&Flre » T
Synapse Integration/threshold Fire
* Fully digital implementation , .. ,
. T Vel : * Mixed analog-digital e Optoelectronic
WO versions: : . : :
. DANNA2-dense is implementation * Neurons implemented using
* Synapses implemented with superconducting

programmable

- twin memristors optoelectronics
« DANNA2-sparse is - o DF’I .
. . .r: ® rogrammabpie ® elays are on neurons, no
application-specific g y !
synapses
Mitchell, J. Parker, et al. "DANNA 2: Dynamic adaptive Chakma, Gangotree, et al. "Memristive mixed-signal . " . .
neural network arrays." Proceedings of the neuromorphic systems: Energy-efficient learning at the Buckley, Sonia, et al. "Design of superconducting
International Conference on Neuromorphic Systems. circuit-level." IEEE Journal on Emerging and Selected ggﬁggh‘?[?ggof'g Or;est‘;VEolz_I;:_S I]:%repr?:t;g/r;?rggfference on
ACM, 2018. Topics in Circuit .1(2018): 125-136. :
CM, 2018 opics in Circuits and Systems 8.1 (2018): 125 Rebooting Computing (ICRC). IEEE, 2018.
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How do you build a spiking neural network for o
neuromorphic system for a particular problem-e

Not only do we have to come up with the right spiking neural
network structure, that spiking neural network also has to work
within the hardware constraints: architecture, device, AND
materials.
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Evolutionary Optimization for Neuromorphic Systems
(EONS)

Random Ordered Population

e e Child
Initialization Best Population
Parents

@ Reproduce @ @

Evaluate

and Rank

O

o o
O
v Worst /
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Why Evolutionary Optimization?

» Applicable to a wide variety of tasks

« Applicable to different architectures and
devices

e Operates within the characteristics and
constraints of the architecture/device

e Can learn topology and parameters (not
just synaptic weights)

e Can interact with software simulations or
directly with hardware

e Parallelizable/scalable on HPC
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Applications of Neuromorphic Computing

Spatio-
Temporal

« Scientific discovery

Continuous
Learning

e Co-processor
e Large-scale data analytics

Neuromorphic Real-Time

Application Processing . Cyber SeCu I'Ity

Characteristics

Requires

robustness

o Autonomous vehicles
 Robotics

Not high
precision

* Internet of things

e Smart sensors
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Danna2 Sparse Neuromorphic Device Plays Asteroids

w 0.00
Cooldawn: 0.00
Score: 0 . : Q

The right outputs are "don't fire" and "fire". Ties are broken to not fire.



* Neutrino scattering experiment at
Fermi National Accelerator
Laboratory

 The detector is exposed to the NuMI
(Neutrinos at the Main Injector)
neutrino beam

* Millions of simulated neutrino-
nucleus scattering events were
created

 Classification task is to classify the
horizontal region where the
Interaction originated

Source: A. Terwilliger, et al. Vertex Reconstruction of Neutrino Interactions using Deep Learning. [JCNN 2017.

MINERVA Detector
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Two Data Inputs Types (Three Views)

Deep Learning: Energy values as interpreted as pixels

120 120 120
100 100 100
80 80 80
60 60 60
40 40 40
20 20 20
0 0 0

0 10 20 30 40 50 0 5 10 15 20 25 0 5 10 15 20 25

Spiking: Time when energy deposition goes over a very low threshold

120 120 120

100 100 100

80 80 80

60 60 60

40 40 40

20 20 20
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Spiking Neural Networks

nnnnnnnnnn
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Best Results: Single View

N conv pool conv conyv conyv | pool dro dro
Al | NN F?gf]'f 3 Figf]'f’ 4 | 4 (‘;‘;]6) 0 {;382) 0 (fff’) classification
(8x3) (2x1) (7x3) (6x3) (6x3) | (2x1) out out

Convolutional Neural Network Result: ~80.42%

* 90 neurons, 86 synapses

» Estimated energy for a single
classification for mrDANNA
implementation: 1.66 uJ

Spiking Neural Network Result: ~80.63%

urce for CNN results: A. Terwilliger, et al. Vertex Reconstruction of Neutrino Interactions using Deep Learning. [IJCNN 2017.
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Example Application: Autonomous Robot Navigation

» Task: Navigate and explore an unfamiliar
environment while avoiding obstacles

« Challenges:
— No explicit instructions on how to operate
— No prior knowledge about the environment
— Limited input resolution (LIDAR sensors)

— Process all inputs and make control
decisions on-board the robot (no
communication to/from the robot to another
computer system)

— Train only in simulation
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Application: Robotics Control Results

04K RIDGE Student Application: Parker Mitchell and Grant Bruer (Spring 2017)




Application: Robotics Control Results

QK RIDGE Student Application: Parker Mitchell and Grant Bruer (Spring 2017)



Summary

e The future of Al is likely to include custom hardware like neural
hardware and neuromorphic computing

 Neuromorphic computing systems are non-trivial to program

* We've developed a spiking neural network training methodology
based on evolutionary optimization that has been applied to multiple
iImplementations and many applications

 Now is the time to get involved!
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Interested in Learning More about Neuromorphic?

“A Survey of Neuromorphic Computing and Neural

Networks in Hardware”
https://arxiv.org/abs/1705.06963

Hopfield
pmb“w:ﬁe Convolutional
lhndom\; o ‘ ‘/ Recurrent
DBN—" '/

Network Models Over Time
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Work supported by:

Department of Energy

Air Force Research Lab

TENNLAB

NEUROMORPHIC

ARCHITECTURES. LEARNING. APPLICATIONS.
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neuromorphic.eecs.utk.edu
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Thank youl!

Questions?

Contact:
Email: schumancd@ornl.gov

Website: catherineschuman.com

M OA RIDGE Twitter: @cdschuman

llllllllll saboratory




Non-Traditional Input
Encoding Schemes for
Spiking Neuromorphic
Systems

e [JCNN 2019

e |In collaboration with Jim Plank, Grant
Bruer, and Jeremy Anatharqgj from UT




Key Challenge: Input Encoding

Spiking neural networks
require spikes over time
as input
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Key Challenge

Numerical Input Data

0.7 04 03
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. Input Encoding

How do you
convert
numerical data
into spikes?




Common Approaches

Rate Coding

Temporal Coding
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Common Approaches

0.6 ANEEEEEN

Key Issue:
Limited input resolution for real-time

processing applications
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Proposed Input Encoding Schemes

« Motivation: Develop encoding schemes that:
— Can be applied to a wide variety of input data types

— Can represent single input values over a very short period of time so that they
can be applied to real-time classification or control tasks

* Encoding schemes:
— Binning

Assumption: For a given input Kk,

_ we assume that all possible input
- Spike-count values fall in the range m, to M,

— Charge-injection
— Complex encoding schemes

« Combining binning, spike-count, and charge-injection encoding to form more complex
calculations
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Key Observations

The encoding scheme chosen has an impact on application performance.
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Key Observations

The encoding scheme chosen has an impact on application performance.
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Key Observations

The appropriate encoding
scheme depends

primarily on the
application, rather than
the implementation.
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Multi-Objective
Optimization for Size and
Resilience of Spiking
Neural Networks

» |EEE Ubiquitous Computing,

e In collaboration with Mihaela Dimovska
(University of Minnesota), Travis
Johnston, Parker Mitchell, and Tom
Potok




Size Optimization: Pruning Post-Training

 Strategy: Prune internal neurons with low spiking frequency

Original
. Prune Average 75.09
number of
internal
neurons
Average 32.61 139.19 438.18
number of
synapses
400 1 Average 292.2 0.777 214.9
100 A 300 - performance
200 A
100 A
0 - Average 35.24
number of
0.8 1 internal
neurons
0.6 1
Average 21.53 62.52 35.24
0.4 4 number of
synapses
0.2 Average 288.7 0.778 208.3
0.00 - 0.0 - performance
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Size Optimization: Multi-Objective for Size

 Strategy: Adjust the training fitness function to include minimizing

size as an objective
PB Radio Asteroids -_

" 801 Original Average 75.09
S ® 60 - Prune iiumber of
2 6- Size internal
- 40 1 neurons
L
S 2 - 20 - Average 32.61 139.19 438.18
T number of
0- 0- synapses
Average 292.2 0.777 214.9
30 - 400 1 performance
H 100 + 300 -
2 20 -
v 10 - )
100- Average
0- 0- 0- number of
internal
1.00 4 0.8 1 neurons
o 2757 0.6 Average 23.41 122.9 147.17
£ ] number of
3 0.50 0.4 synapses
0.25 1 0.2 Average 297.5 0.788 235.22
0.00 4 0.0 - performance
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Mult-Objective Optimization for Resiliency

Network N, score = 300sec. Network Ni, score = 280sec. Network Nj, score = 290sec.

w;+ = 0.01

O

W+ = 0.0

_05 300 - (1 — % - 0.001) + 0.5 - (2120 ~ 292.44
Weighting factor / \ \ f f
inli Weighting factor Average of scores o
0N RIDGE Score Size multiplier ghting verturbed networks
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Mult-Objective Optimization for Resiliency
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In training

m Perturbation: a sampled
synapse has 8" bit flipped.

m 5 variations: each synapse
has its 8" bit flipped with
probability 0.1

Experiment

m Generate 20 size and
size-and-resiliency optimized
SNNs

m 500 random synapse (8 bit
flip) perturbations per
network

Polebalance, DANNA2
1 1

= Size Optimized
- Resiliency and Size Optimized

0.4680 0.8092
Resilience

Resiliency metric
optimal performance—network performance
optimal performance
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Island Model tor Parallel
Evolutionary Optimization
of Spiking Neuromorphic
Computing

« GECCO 2019

« In collaboration with Jim Plank (UT),
Robert Patton, and Tom Potok




Scalable Island Model
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Island Manager

L N
Communication
via pipe

L N

Legend

) Network
t Communication

via MPI or socket




Scalable Island Model

Islands With and Without Migration

 |slands Wl.th communication Migration
saw consistently better 140001 _,  No Migration
results in the same amount

©

)

T 12000 -
of time on the same §
computational resources as © 10000 -
islands without s

At ~ 8000 -
communication 2
« More resources generally £ 6000

(N

lead to better results faster i

. . ) -
(with the right a 4000
hyperparameters). 20004

16 64 256 1024
Number of Cores
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Scalable Island Model: Hyperparameters Matter

Bl Cores = 16

B Cores = 64 B TopN=1 Bl Freq=5 B Stagnant =2
1 Cores = 256 B Policy = Always 1 TopN =10 B Fieq =10 [ Stagnant = 3
B Cores = 1024 I Policy = Only No Migrant ] TopN=20 1 Freq =20 [ Stagnant = 4
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Scalable Island Model: Hyperparameters Matter

B Cores = 16

I Cores = 64 B TopN=1 Bl Freq=5 B Stagnant =2
[ Cores =256 B Policy = Always [ TopN=10 B Fieq =10 [] Stagnant =3
B Cores = 1024 B Policy = Only No Migrant [ ] TopN=20 Freq =20 [ ] Stagnant =4
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