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|. Introduction




About myself

= PhD Student at CERN working on Machine Learning techniques for beam optics studies at the LHC.

o B.Sc. in Business Informatics
o M.Sc. in Computer Science,

o Technical Student at CERN,
LHC Optics measurements and corrections team:

specialization Interactive Intelligent Systems - Responsiblg for Java GU'-‘*.USEd in the LHC control
(University of Applied Sciences Karlsruhe, Germany) - Idea of solving Beam Optics related problems

using Machine Learning

o Master’s Thesis:
“Evaluation of Machine Learning methods for optics
measurements and corrections at the LHC”

NH Computer Science

PhD project: Application of Machine
Learning to Accelerator Optimization
with the focus on beam optics.
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Accelerator Physics




Motivation

4 )
Accelerators ML is a powerful
Limitations of traditional optimization and - tool for predictic?n and data
modeling tools? analysis
\ %

Which limitations can be solved by ML with reasonable effort?

» How to deal with previously unobservable behavior?
» Required computational resources for large amount of optimization targets
» Objective functions, specific rules and thresholds have to be known

Machine Learning methods can learn an arbitrary model from
given examples without requiring explicit rules




Machine Learning concepts

"... computer programs and algorithms that automatically improve with experience by learning from
examples with respect to some class of task and performance measure, without being
explicitly programmed.” *

Supervised Learning Unsupervised Learning Reinforcement Learning
4 : : ) e Onlyinput data is given ¢ No training data A
* Input/output pairs available , ,
. e Learn structures and * Interact with an environment
e Make prediction for unknown _ _
. ) patterns * Trying to learn optimal
input based on experience o
: sequences of decisions
from given examples \ %
J
Object detection in computer Anomaly detection, pattern . : :
s " w . Robotics, industrial automation,
vision, speech recognltlon, recognltlon, clusterlng, .
. : : : : dialog systems
predictive control dimensionality reduction

* Thomas M. Mitchell. Machine Learning. McGraw-Hill, Inc., New York, 1997.




Machine Learning concepts

"... computer programs and algorithms that automatically improve with experience by learning from
examples with respect to some class of task and performance measure, without being
explicitly programmed.” *

Applied in optics measurements
and corrections at the LHC

Supervised Learning Unsupervised Learning Reinforcement Learning
( . . ) .
4 : : R e Onlyinput data is given ¢ No training data A
* Input/output pairs available , ,
— e Learn structures and * Interact with an environment
e Make prediction for unknown _ _
. ) patterns * Trying to learn optimal
input based on experience \_ y o
: sequences of decisions
from given examples \ J
Y,
Object detection in computer Anomaly detection, pattern . : :
s " w . Robotics, industrial automation,
vision, speech recognltlon, recogmtlon, clusterlng, .
. : : : : dialog systems
predictive control dimensionality reduction

* Thomas M. Mitchell. Machine Learning. McGraw-Hill, Inc., New York, 1997.




Applying Machine Learning to Beam Optics

= Why and how is the beam optics controlled in the LHC?
= Where are the limitations of traditional techniques?

=  Which ML concepts and algorithms can be applied?

= Achieved results?

PhD project: Application of Machine
Learning to Accelerator Optimization
with the focus on beam optics.




Applying Machine Learning to Beam Optics

= Why and how is the beam optics controlled in the LHC?
= Where are the limitations of traditional techniques?

=  Which ML concepts and algorithms can be applied?

= Achieved results?

PhD project: Application of Machine
Learning to Accelerator Optimization
with the focus on beam optics.

Beam optics control:
» Magnetic errors and misalighnments change beam size - optics
» Adjust magnetic strengths — optics corrections.

Importance of beam optics control:
» Collision rate depends on the beam size
» Beam optics imperfections can lead to machine safety issues.

Interaction
Point

Relative beam sizes around IP1 {(Atlas) in collision




Where are the limitations of traditional techniques?

“* Instrumentation faults lead to unreliable optics measurements
- How to detect faulty Beam Position Monitors and discard them from analysis before they cause
erroneous computation of optics functions?

** Optics corrections algorithms aim to compensate the measured optics deviations from design
-  What are the actual currently present magnetic errors?

*» Advanced techniques for computation of optics functions require additional measurements and operational time
- How to obtain advanced analysis from available measurements?

*» Noise in the measured optics functions
- How to reduce the noise without removing valuable information?

“» Missing data points due to the presence of faulty BPMs
- How to reconstruct the missing data?




|. Detection of faulty Beam Position Monitors




Detection of faulty Beam Position Monitors

Optics measurements in the LHC Calculate optics
functions (beta-beating,

dispersion, etc.) based
BPMs record the BPM turn-by-turn readings on harmonic analysis of
turn-by-turn data BPMs signal

measuring the
oscillations of the
excited beam

+ data cleaning

* Previously available techniques:
BPM data cleaning based on Singular Value Decomposition (SVD) + signal cuts with predefined thresholds.

* Unphysical values still can be observed after cleaning with available tools: presence of faulty BPMs
- Define outliers, manual cleaning of BPM signal, re-analyse the optics.

- Important to detect as many faulty BPMs as possible before computing the optics

- ML as an alternative solution to improve the analysis.




Outliers in the optics computed from harmonic analysis of BPM signal
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Detection of faulty BPMs using unsupervised learning

General Idea: Since actual malfunctioning BPMs are unknown, we consider the appearance of non-physical outliers
in reconstructed optics as artifact of bad BPMs.

We do not want to replicate current results, so no training data set (input-output pairs) is available

- Unsupervised Learning

Assuming most of the BPMs measure correctly, the bad BPMs should appear as anomaly

- Anomaly detection techniques

Applied clustering algorithms: DBSCANJ[1], Local Outlier Factor[2],
anomaly detection using Isolation Forest[3] implemented with Scikit-Learn.

(¢]

(¢]

(¢]

o good

Causes unphysical values in Detection of faulty signal & oy I Avoid the appearance of
reconstructed optics, but how to prior to optics computation erroneous optics computation
B detect before analysis? 1 o 1.0
Az | P2 IP3 IP4 IP5 IP6 IP7 IP8 IP1
61 g
. i S
E 5| - ‘ios 2.5 o <§>>
E ® PS o.ow
g J 2 < hd ®0
5 . n * S-2.5
® & — A A < ’
0 %‘& A A ‘l ;2 o SVD b
_ -5.0
baa no o SvDandIF ¢
B 1000 2000 :ahomms 4000 5000 6000 0.8 10 O
Ofhnegs e 0 5000 10000 15000 20000 25000
1. “A Density-Based Algorithm for Discovering Clusters in Large H H ' e . . Longitudinal location [m]
bases with Noi ® ciegel, 1. Sande Harmonic analysis o 02 Optics computations

Spatial Databases with Noise” Ester, M., H. P. Kriegel, J. Sander

2. Breunig, M. M., Kriegel, H. P., Ng, R. T., & Sander, J. (2000, May)., LOF: identifying density-based local outliers
3. Liu, Fei Tony, Ting, Kai Ming and Zhou, Zhi-Hua. “Isolation forest.” Data Mining, 2008. ICDM‘08.




Isolation Forest (IF)

. Forest consists of several decision trees
. Random splits aiming to “isolate” each point
. The less splits are needed, the more “anomalous”
. Contamination factor: fraction of anomalies to be expected in the given data
® N_:splits =1 ® N_Isplits =2 P N_:splits =3
o @ i @ | e
EAC g CC) ® 0 .
ki | i i |
© R | R 4
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Conceptual illustration of Isolation Forest algorithm




BPM signal properties as input features

Harmonic properties of BPM turn-by-turn signal 107 [Amplitude 2025 ¢ .
E 5
* Betatron tune (main frequency) £ 10 8020
* Amplitude %_10_3 MW 0.5
. . . < o
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Input features and 2D-projection of anomaly
detection in BPM data.




Unsupervised learning: how to verify the results?

No prior knowledge about which BPMs will produce faulty signal in acquired turn-by-turn data.
— Simulate faults*: bad BPMs are known, cleaning results can be verified

*Simulated data is used only to verify the algorithm, there is no “training”.

Simulations setup:

. Around 5.5% per plane are faulty considering the statistics from the past measurements in
2018 (SVD detected bad BPMs + remaining outliers in the optics)

. Generate ideal turn-by-turn signal with Gaussian background noise 0.1mm

. Add signal perturbation related to known faults to 5.5% randomly chosen BPMs.

» Compare clustering algorithms
» Fine tuning of IF algorithm
» Verify results on a larger data set




Faulty BPMs detection: simulation study

» Comparing different suitable techniques: » Tuning of IF-algorithm after finding optimal settings for
The presence of a single faulty BPM has more significant SVD-cleaning:
negative impact on the optics computation than the - Trade-off between eliminating bad BPMs and removing
absence of a good BPM good BPMs as side effect by setting the expected
- IF is preferred method for the LHC. contamination rate
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IF in the LHC operation: detecting unknown failures

Some artifacts in the signal are known to be related to BPM failures (manual cleaning would time
consuming, but potentially possible).

e How to deal with unknown failure modes?

Several BPMs with unusual pattern in the
spectra indicating a new failure mode
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First observed in: “Analysis of tune Longitudinal location [m]
modulations in the LHC”, D.W. Wolf
Related to BPM failure: L. Malina, . , . .
“Noise and stabilities” Since IF is based on the structures in given data
https://indico.cern.ch/event/859128/ > Ability to identify previously unknown failures




IF in the LHC operation: B-beating computed from cleaned BPM data

e Optics computation using the data cleaned with traditional techniques only vs. additionally applying IF

IP2 IP3 IP4 IP5 IP6 IP7 IP8 IP1 IP2 IP3 IP4 IP5 IP6 IP7 IP8 IP1
8 .
0.25 . i SvD
. . 3 6 ! SVD and Isolation Forest
& 000 pRrimmmmr et S T e S, < |
;’f 0.25 . ‘2\4
g <,
—-0.50 ‘. |
0.75 ° i
) 5000 10000 15000 20000 25000 0 5000 10000 15000 20000 25000
Longitudinal location [m] Longitudinal location [m]
Reduction of non-physical outliers in beta-beating, v . . . .
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E . .
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€ Lo in 2018 under different optics settings.
3
=
Detection of faulty beam position monitors using unsupervised learning
0- E. Fol, R. Tomads, J. Coello de Portugal, and G. Franchetti

Phys. Rev. Accel. Beams 23, 102805 (2020)



https://journals.aps.org/prab/abstract/10.1103/PhysRevAccelBeams.23.102805

. Estimation of magnetic errors




Optics corrections at the LHC

e Corrections aim to minimize the difference between the measured and design optics by changing
the strength of corrector magnets — single quadrupoles and quadrupoles powered in circuits.

Optics corrections in the LHC are currently based on: i before_correction  § after_correction
— Local corrections around Interaction Points 0.08 -
(e.g. Segment-by-Segment method) ggj
. 0.029 &
— Global corrections using a Response Matrix between = o.0|i .

. . q .
available correctors and optics observables. ~0.02¢
—0.04 p

-0.06 "
e

— For each beam separately.




Optics corrections at the LHC

e Corrections aim to minimize the difference between the measured and design optics by changing
the strength of corrector magnets — single quadrupoles and quadrupoles powered in circuits.

» What is the actual error of each individual magnet?

Optics corrections in the LHC are currently based on: § before correction | after correction
— Local corrections around Interaction Points 0.08— . .
(e.g. Segment-by-Segment method) ggj
. 0.02{3 8%
— Global corrections using a Response Matrix between - ooo|

. . q .
available correctors and optics observables. ~0.02¢
—0.04 p

» Appropriate weights of observables in the ~0.06
response matrix are adjusted manually. !

— For each beam separately.

Supervised Learning &
» How to determine the whole set of errors for multivariate regression

both beams simultaneously?




General concept

Optics
Measurement

Regression Model,
Supervised Learning

» Train supervised regression model to predict magnet errors from optics perturbations

caused by these errors.

Quadrupole Errors

Ideal optics

» Large dataset is needed in order to train a regression

+ —)p MAD-X

model: simulations! [

Errorsin
individual Simulations
quadrupoles

» Correlations between magnetic errors and optics
deviations from design can be learned by ML-model.

Optics perturbed
with individual
quadrupoles

Supervised ‘

Training

ML-model

\d

Errorsin
individual
quadrupoles




Supervised Learning

Supervised Learning

~

* Input/output pairs available

* Make prediction for unknown
input based on experience
from given examples

N\ /

Predictive modeling, object

recognition, medical diagnosis,
fraud detection

example 1
example 2
example 3

» Fitting data with (complex) functions

» Mathematical models learned from data to describe relationships between
variables in the system
» Learning = estimate statistical model from training data to make
predictions on new data.

Training

input data

.

N '._-_:'I .

i . v
*

Function with adjustable
parameters (weights, bias)

Compute the loss (approximation error ):

Model
output

e.g. MSE, MAE
Training

' Minimizing the loss

T output data

Adjust parameters ‘




Linear Regression model as predictor

Linear model for input X, output Y - pairs, i — number of pairs (training samples), with weights w:
fx,w) =wlx

Residual sum of squares as loss function for model optimization:
2
L(w) = Z(y,- — f(Xsw)
i

Find new weights minimizing the Loss function:
w* = arg min,, L(w)

Update weights for each incoming input/output pair

e Generalized model explaining relationship between input and output variables in all training samples.
e Test the model on unseen validation data.
- How to improve the predictive power of the model?




Weights update regularization & bagging

Ridge coefficients as a function of the regularization

Too much “flexibility” in weights update can lead to overfitting

- Regularization places constraints on the model parameters 200 -
- Trading some bias to reduce model variance

100 A

weights

- Using L2-norm: 2(w) = Ziwl?, adding the constraint a2(w) to
the weights update rule: Ridge Regression

—-100 -

- The larger the value of «, the stronger the shrinkage and thus the
coefficients become more robust. i - = s

alpha

- Bagging: Bootstrap Aggregating: reduce variance of the model, Individual Models Average Model
without increasing systematic error of prediction: A

Green = true function

- Ensemble of slightly different models 0
- Train a separate model on a subset of training data
- Average output of each predictor for the final output.

0 s 1 0 s 1

[Bishop, “Pattern Recognition”]




Simplified studies: optics deviations caused by circuits errors

- Training data: perturb the optics by changing the
. . . . . Quad 1 Quad 2 Quad N
strength in the circuits (quadrupoles powered in series) S @ """ S
- Validation: simulations perturbed with errors in
individual quadrupoles o |
Schematic circuit representation Supply

Different algorithms are compared: Orthogonal Matching

. —— Uncorrected
Pursuit, Random Forest, 20 RS T U
Convolutional Neural Network: —— Corrected with RM
.. $ 10

> Similar results = | | ‘
» Linear Regression as baseline model: % 0 " -/ TR | Ml !‘1 4

— easier to interpret, 2 | l \ I

— faster to train, 10

— mostly linear effects are present in simulations. 55

0 200 400 600 800 1000
BPM index

» Increasing the complexity of simulations step by step

by adding additional error sources, exploring = Correction results using Convolutional Neural Network are

limitations of regression models. similar to Response Matrix.




Data generation and model training

Training samples generated using MAD-X:

* Using nominal optics settings corresponding to settings used in uncorrected machine

* Assigned magnetic errors: quadrupolar field errors, longitudinal displacement of
quadrupoles, transverse misalignment of sextupoles, dipole field errors

Realistic training data to make adequate
‘ prediction from measurements.

e 1256 target variables
- assigned gradient errors in the all quadrupoles, both beams.
e 3304 input variables: simulated deviations from the design optics in betatron phase advance,
normalized dispersion at all BPMs and B at BPMs next to Interaction Points.
- Adding realistic noise estimated from the measurements.

Selected model:

e Scikit-Learn implementation of Ridge Regression

* Bagging-estimator (combining 10 Ridge Regression — models, with regularization parameter a=0.001)
e 80000 training samples (divided into training and test sets)




How to evaluate trained models?

* “ML point of view”: compare predicted magnet errors with corresponding true values.

. . " : Var{y —y}
Figures of merit: TAE(y. i) = s — U Ry, ) =1— —— -
g MAE(y.5) ; i — 0l (,9) Varls)

* In terms of optics:

ML-model input: optics perturbed with magnet errors to be predicted
How well can be

?

ML- model output: magnet errors estimated from optics perturbations reconstructed:
. . . ‘ IP . __LHCB1 p*=0.6 m
3 Ronds m |

: . . . S ) el . T N 1 vt T
* Evaluating triplet (quadrupoles next to Interaction Points) and arcs x"] -I -I a1 'l. -] -I'l 1
magnet errors prediction separately: e
By -

- local correction of the triplet is the most challenging part.
- generates largest optics perturbations
- translation of individual errors in the triplets into correction settings.

By.y [km]

-400 -300 -200 -100 0 100 200 300 400
Longitudinal location from IP [m]




Results on simulations: errors of prediction

» Comparison between true simulated and predicted errors

Field errors in individual magnets Combining individual quadrupole errors
around Interaction Points according to the powering scheme in the LHC
‘ Ql and Q3 ‘ Q2A and Q2B
—— corr = 0.20 . — = .
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Magnet errors [107%] Magnet errors [107%] Magnet errors [10~4]

systematic prediction error (bias) 2 19%,
random error (variance) ~ 30%.

5% systematic prediction error 1% systematic prediction error




Results on simulations: comparing resulting optics errors

Ideal optics +
simulated errors = perturbed optics

Difference

AB/Bmai?

Ideal optics +
predicted errors = reconstructed optics

- Very good agreement between the optics
simulated with true magnetic errors and
simulations generated with the errors predicted
by the model.
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Beam 1

Original, 17%
Reconstructed, 17%
Difference, 1%
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Original, 16%
Reconstructed, 16%
Difference, 1%
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Results on experimental data: 2016 LHC commissioning

“Ground-truth” of magnet errors is unknown unlike simulations.

1. Use predicted magnet errors to simulate optics perturbation

2. Compare produced simulation to actual measurement

- Residual error of measured optics reconstruction (= potential correction)

éﬁ N entructlo ‘ ! l é: it | Rtruction ‘
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Results on experimental data: 2016 LHC commissioning

“Ground-truth” of magnet errors is unknown unlike simulations.

1. Use predicted magnet errors to simulate optics perturbation

2. Compare produced simulation to actual measurement

— Residual error of measured optics reconstruction (= potential correction)
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—— Measurement —— Correction —— Measurement —— Correction
T Reconstruction = BT 1 Reconstruction
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1. Denoising and reconstruction of optics functions




Effect of the noise

Model scores depending on the phase advance Model scores depending on the dispersion noise,
noise (other input features are not used) phase advance noise is unchanged
1.
3.0 P 2.25] e P
e e Pt N "
2.5 0.8 5°2.00 A
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mE 20 S MAEtrip!ets ’ mE 1.75 A MAEtrr'plets
5 01 A MAE,.. 06 5 o A~ MAE.. 078
I_é 1.5 —0— thota.’ I_é 1.50; —@— thota]
uwy 0.4 - ]
§ 1.0 (& A Ao g 1.25 S NS 7 N A o 7 — A 0.6
/", E 1 | /‘,
051 o A 0.2 o A 0.5
107 10~ 1073 1072 075 10-5 10-% 10-3 10-2
Phase advance noise [2] Dispersion noise [V]

» Prediction of magnetic errors in the arcs sections suffers from the presence of noise

» Simulations in the absence of noise: very high ML-model scores

» Increasing prediction quality possible with more precise measurements of optics
functions used as regression model input.




Experimental data: possible issues

* Training models on simulations data: full set of input features is always available
* |ssues with using measurements as input to make new predictions:
- General: faulty BPMs = missing values at the location of cleaned BPMs
- Normalized dispersion and B at BPMs next to IPs: special measurements techniques are needed
— Features are not always available e.g. depending on the measurement procedure.
- Noise in the input data affects the prediction of the regression models significantly.

How to deal with missing and noisy data?




Experimental data: possible issues

* Training models on simulations data: full set of input features is always available
* |ssues with using measurements as input to make new predictions:
- General: faulty BPMs = missing values at the location of cleaned BPMs
- Normalized dispersion and B at BPMs next to IPs: special measurements techniques are needed
— Features are not always available e.g. depending on the measurement procedure.
- Noise in the input data affects the prediction of the regression models significantly.

How to deal with missing and noisy data? I:> Denoising Autoencoder

e A special neural network designed to
\ / reproduce given input as output of
the network

input output * Neural Network: approximation of
non-linear functions

/ \ Applications:
hidden - Denoising of data

encode decode - Dimensionality reduction
Encoder: compressing the input data to lower dimensions i Genera.tlve modeling ) .
Decoder: reconstructing the data into original input. - Supervised and unsupervised learning




Experimental data: possible issues

* Training models on simulations data: full set of input features is always available
* |ssues with using measurements as input to make new predictions:
- General: faulty BPMs = missing values at the location of cleaned BPMs
- Normalized dispersion and B at BPMs next to IPs: special measurements techniques are needed
— Features are not always available e.g. depending on the measurement procedure.
- Noise in the input data affects the prediction of the regression models significantly.

How to deal with missing and noisy data? Denoising Autoencoder

Simulated optics observable \ /

+ hoise input output

- observation at few locations
'/hlddexﬂ

encode decode

Original full set of
optics observables




Reconstruction and denoising of phase advance deviations

» Input: simulated phase advance deviations given noise and replacing 10% of values with 0 (faulty BPMs)
» Output: original simulated phase advance deviations
» Autoencoder with 4 hidden layers, 10000 samples

Reconstruction of missing values in a validation sample

0.03. —— Simulated
' . 250 = .
| (R Reconstructed Simulated noise, rms=0.0017
0.021 { | 200 Reconstruction error, rms=0.0008
0.011
E 150
= 0.001
s 100
—-0.011
| j ! ‘ 50
~0.02+ / ] V
—0.031 ' 0 —0.008 -0.006 —0.004 —-0.002 0.000 0.002 0.004 0.006 0.008
. Agl2n]
v" Missing BPMs: possibility to obtain reliable v" Full set of phase advance deviations:
estimation of the phase advance deviations at reconstruction error is by factor 2 smaller than
the location of faulty BPMs. simulated realistic noise.




Reconstruction of normalized dispersion from
phase advance deviations

* Input: simulated phase advance deviations given noise

* Output: normalized dispersion ADX/\/,BX
* Using linear regression model: Ridge Regression, 10 000 samples

Simulated rms AD /V/B, : 0.0802 \m

Simulation example: Beam 1 RMS-error between simulation and reconstruction: 0.007 \'m
601 True
Predicted 0.2 N oy
>0 Difference ‘ , i
40 E 0.1 9
301 = ) /
% 0.0/ N V= / /\ )
20/ X ;
< _0.1]
10 — True
—— Predicted
%62 —01 00 01 02 i - ' ' , '
' ' ' ' : 100 200 300 400 500
AD, /v Bx[m] BPM index




Reconstruction of f from phase advance deviations

Simulation: summary of 1000 seeds

Simulated * Input: simulated phase advance deviations given
1094 Reconstructed noise (beam 1 and 2, horizontal and vertical planes)
Lol Difference  Output: AS errors at 2 BPMs left and right from
% IPs 1, 2, 5 and 8 (32 variables in total)
g 102 * Ridge Regression, 10 000 training samples
101_
100’_

25 50
AB/BL%]

75 100 125

,Bsimulated_ﬂreconstructed _ 1%
p_simulated

» Reconstruction error:




Conclusion and outlook

e Detection of faulty BPMs:
. L. . . 30 I Bad BPMs removed by SVD
o Predefined rules and thresholds are not sufficient to identify faulty BPMs. @ mmm Spikes remaining after SVD
v' Unsupervised Learning based cleaning technique became fully operational £, = Splkes removed by IF
standard part of optics analysis g
v" Identified previously unknown bad BPMs efficiently in 2018 without human 510
intervention. o

. . . . Summary of measurements in 2018, nearly all
* Estimation Of magnet errors and OptICS reconstruction: unphysical outliers can be removed by IF

o Optics corrections today are done in two steps (local and global).
v" ML-models allow to predict all quadrupole errors for both beams
simultaneously, local and global errors in one step 1201 e e
v Promising results on simulations and experimental data, especially for optics He0 Reedunt
corrections in Interaction Regions (1 - 5% systematic error) 22
o Current limitations: 40
- Linear error sources in training simulations 20
- Prediction of arc magnet errors highly depends on the noise in the measured e T R R R

Magnet errors [1074]

optics observables.
Residual error for a correlated group of triplet

quadrupoles




Conclusion and outlook

e Denoising and reconstruction of missing data:

—— Simulated

v" Successfully demonstrated on simulations the possibility reduce 003 - Reconstructed
. . | E i
noise of phase advance measurements using autoencoder 0.02
v Reconstruction of missing features for the magnet errors 0.01;

0.00

Agx[2n]

prediction = re-training on available data is not needed
v’ Linear regression models to reconstruct optics observables from ~ _go1 | \

phase advance deviations 0021 ] N ;’ y i
v’ Providing optics functions estimates, when time costly |

measurements techniques cannot be performed

—0.03

e Qutlook:

o Optics-independent model: mixed training set of simulations generated using different nominal optics settings
o Correction knobs from predicted individual errors
o Integration into operational LHC software infrastructure. .




Thank you very much for your attention!




