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I. Introduction



▪ PhD Student at CERN working on Machine Learning techniques for beam optics studies at the LHC.

o B.Sc. in Business Informatics
o M.Sc. in Computer Science, 

specialization Interactive Intelligent Systems
(University of Applied Sciences Karlsruhe, Germany)

o Technical Student at CERN,
LHC Optics measurements and corrections team: 
- Responsible for Java GUIs used in the LHC control
- Idea of solving Beam Optics related problems
using Machine Learning

o Master’s Thesis: 
“Evaluation of Machine Learning methods for optics 
measurements and corrections at the LHC”

PhD project: Application of Machine 
Learning to Accelerator Optimization 

with the focus on beam optics. 
Computer Science Accelerator Physics

About myself
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Accelerators

Limitations of traditional optimization and 
modeling tools?

Motivation

ML is a powerful 
tool for prediction and data 

analysis

Which limitations can be solved by ML with reasonable effort?

➢ How to deal with previously unobservable behavior?
➢ Required computational resources for large amount of optimization targets
➢ Objective functions, specific rules and thresholds have to be known

Machine Learning methods can learn an arbitrary model from 
given examples without requiring explicit rules
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Machine Learning concepts

Supervised Learning Unsupervised Learning Reinforcement Learning

• Input/output pairs available
• Make prediction for unknown 

input based on experience 
from given examples

• Only input data is given
• Learn structures and 

patterns

• No training data
• Interact with an environment
• Trying to learn optimal 

sequences of decisions

* Thomas M. Mitchell. Machine Learning. McGraw-Hill, Inc., New York, 1997.

Object detection in computer 
vision, speech recognition, 

predictive control

Anomaly detection, pattern 
recognition, clustering, 

dimensionality reduction

Robotics, industrial automation, 
dialog systems

"… computer programs and algorithms that automatically improve with experience by learning from 
examples with respect to some class of task and performance measure, without being 
explicitly programmed." *
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Machine Learning concepts
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• Only input data is given
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• No training data
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* Thomas M. Mitchell. Machine Learning. McGraw-Hill, Inc., New York, 1997.

Object detection in computer 
vision, speech recognition, 

predictive control

Anomaly detection, pattern 
recognition, clustering, 

dimensionality reduction

Robotics, industrial automation, 
dialog systems

"… computer programs and algorithms that automatically improve with experience by learning from 
examples with respect to some class of task and performance measure, without being 
explicitly programmed." *

Applied in optics measurements 
and corrections at the LHC



▪ Why and how is the beam optics controlled in the LHC?
▪ Where are the limitations of traditional techniques?
▪ Which ML concepts and algorithms can be applied?
▪ Achieved results?

PhD project: Application of Machine 
Learning to Accelerator Optimization 

with the focus on beam optics. 

Applying Machine Learning to Beam Optics



▪ Why and how is the beam optics controlled in the LHC?
▪ Where are the limitations of traditional techniques?
▪ Which ML concepts and algorithms can be applied?
▪ Achieved results?

PhD project: Application of Machine 
Learning to Accelerator Optimization 

with the focus on beam optics. 

Applying Machine Learning to Beam Optics

Beam optics control:
➢ Magnetic errors and misalignments change beam size - optics
➢ Adjust magnetic strengths – optics corrections.

Importance of beam optics control:
➢ Collision rate depends on the beam size
➢ Beam optics imperfections can lead to machine safety issues.
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❖ Instrumentation faults lead to unreliable optics measurements
→ How to detect faulty Beam Position Monitors and discard them from analysis before they cause 
erroneous computation of optics functions?

❖ Optics corrections algorithms aim to compensate the measured optics deviations from design
→ What are the actual currently present magnetic errors?

❖ Advanced techniques for computation of optics functions require additional measurements and operational time
→ How to obtain advanced analysis from available measurements?

❖ Noise in the measured optics functions
→ How to reduce the noise without removing valuable information?

❖ Missing data points due to the presence of faulty BPMs
→ How to reconstruct the missing data? 

Where are the limitations of traditional techniques?
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I. Detection of faulty Beam Position Monitors
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Detection of faulty Beam Position Monitors

• Previously available techniques: 
BPM data cleaning based on Singular Value Decomposition (SVD) + signal cuts with predefined thresholds.

• Unphysical values still can be observed after cleaning with available tools: presence of faulty BPMs
- Define outliers, manual cleaning of BPM signal, re-analyse the optics.
- Important to detect as many faulty BPMs as possible before computing the optics

→ML as an alternative solution to improve the analysis.
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Optics computed from the data 
cleaned with traditional tools

Causes a spike, 
obviously, a bad BPM

Causes a spike, but how to detect 
before computing the optics?

Outliers in the optics computed from harmonic analysis of BPM signal
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General Idea: Since actual malfunctioning BPMs are unknown, we consider the appearance of non-physical outliers
in reconstructed optics as artifact of bad BPMs.

◦ We do not want to replicate current results, so no training data set (input-output pairs) is available 
→ Unsupervised Learning 

◦ Assuming most of the BPMs measure correctly, the bad BPMs should appear as anomaly
→ Anomaly detection techniques

◦ Applied clustering algorithms: DBSCAN[1], Local Outlier Factor[2], 
anomaly detection using Isolation Forest[3] implemented with Scikit-Learn.

Detection of faulty BPMs using unsupervised learning

Causes unphysical values in 
reconstructed optics, but how to 

detect before analysis?

Detection of faulty signal 
prior to optics computation

Avoid the appearance of 
erroneous optics computation

Harmonic analysis Optics computations
1. “A Density-Based Algorithm for Discovering Clusters in Large 
Spatial Databases with Noise” Ester, M., H. P. Kriegel, J. Sander

2. Breunig, M. M., Kriegel, H. P., Ng, R. T., & Sander, J. (2000, May)., LOF: identifying density-based local outliers
3. Liu, Fei Tony, Ting, Kai Ming and Zhou, Zhi-Hua. “Isolation forest.” Data Mining, 2008. ICDM‘08.



15

Isolation Forest (IF)

• Forest consists of several decision trees

• Random splits aiming to “isolate” each point

• The less splits are needed, the more “anomalous”

• Contamination factor: fraction of anomalies to be expected in the given data

Conceptual illustration of Isolation Forest algorithm
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BPM signal properties as input features

Harmonic properties of BPM turn-by-turn signal

• Betatron tune (main frequency)

• Amplitude

• Noise to amplitude ratio

Contamination factor
• First obtained from measurement statistics
• Refined on simulations introducing expected 

BPM faults.

Input features and 2D-projection of anomaly 
detection in BPM data.



Unsupervised learning: how to verify the results?

No prior knowledge about which BPMs will produce faulty signal in acquired turn-by-turn data. 
→ Simulate faults*: bad BPMs are known, cleaning results can be verified

*Simulated data is used only to verify the algorithm, there is no “training”.

Simulations setup:
• Around 5.5% per plane are faulty considering the statistics from the past measurements in 

2018  (SVD detected bad BPMs + remaining outliers in the optics)
• Generate ideal turn-by-turn signal with Gaussian background noise 0.1mm
• Add signal perturbation related to known faults to 5.5% randomly chosen BPMs.

➢ Compare clustering algorithms
➢ Fine tuning of IF algorithm
➢ Verify results on a larger data set



Faulty BPMs detection: simulation study
➢ Comparing different suitable techniques:
The presence of a single faulty BPM has more significant 
negative impact on the optics computation than the 
absence of a good BPM 
→ IF is preferred method for the LHC.

➢ Averaged results over 100 simulations

➢ Tuning of IF-algorithm after finding optimal settings for 
SVD-cleaning:

→ Trade-off between eliminating bad BPMs and removing 
good BPMs as side effect by setting the expected 
contamination rate
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IF in the LHC operation: detecting unknown failures

• Some artifacts in the signal are known to be related to BPM failures (manual cleaning would time 
consuming, but potentially possible).

• How to deal with unknown failure modes?

First observed in: “Analysis of tune 
modulations in the LHC”, D.W. Wolf
Related to BPM failure: L. Malina, 
“Noise and stabilities”, 
https://indico.cern.ch/event/859128/

Since IF is based on the structures in given data
➢ Ability to identify previously unknown failures

Several BPMs with unusual pattern in the 
spectra indicating a new failure mode
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IF in the LHC operation: β-beating computed from cleaned BPM data

✓ IF is fully integrated into optics 
measurements at LHC

✓ Successfully used during beam 
commissioning and machine developments 

in 2018 under different optics settings.

• Optics computation using  the data cleaned with traditional techniques only vs. additionally applying IF

Reduction of non-physical outliers in beta-beating, 
summary of measurements in 2018.

Detection of faulty beam position monitors using unsupervised learning
E. Fol, R. Tomás, J. Coello de Portugal, and G. Franchetti
Phys. Rev. Accel. Beams 23, 102805 (2020)

https://journals.aps.org/prab/abstract/10.1103/PhysRevAccelBeams.23.102805
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II. Estimation of magnetic errors
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Optics corrections at the LHC

Optics corrections in the LHC are currently based on:
– Local corrections around Interaction Points 
(e.g. Segment-by-Segment method)

– Global corrections using a Response Matrix between 
available correctors and optics observables.

– For each beam separately.

• Corrections aim to minimize the difference between the measured and design optics by changing 
the strength of corrector magnets – single quadrupoles and quadrupoles powered in circuits.



23

Optics corrections at the LHC

Optics corrections in the LHC are currently based on:
– Local corrections around Interaction Points 
(e.g. Segment-by-Segment method)

– Global corrections using a Response Matrix between 
available correctors and optics observables.

– For each beam separately.

• Corrections aim to minimize the difference between the measured and design optics by changing 
the strength of corrector magnets – single quadrupoles and quadrupoles powered in circuits.

➢ Appropriate weights of observables in the 
response matrix are adjusted manually.

➢ What is the actual error of each individual magnet?

➢ How to determine the whole set of errors for 
both beams simultaneously?  

Supervised Learning & 
multivariate regression
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General concept

➢ Train supervised regression model to predict magnet errors from optics perturbations
caused by these errors.

➢ Large dataset is needed in order to train a regression 
model: simulations! 

➢ Correlations between magnetic errors and optics 
deviations from design can be learned by ML-model.
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Supervised Learning

Supervised Learning

• Input/output pairs available
• Make prediction for unknown 

input based on experience 
from given examples

Predictive modeling, object 
recognition, medical diagnosis, 

fraud detection

➢ Fitting data with (complex) functions
➢ Mathematical models learned from data to describe relationships between 

variables in the system
➢ Learning = estimate statistical model from training data to make 

predictions on new data.
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Linear Regression model as predictor

Linear model for input X, output Y - pairs, i – number of pairs (training samples), with weights w:
𝒇 𝑿,𝒘 = 𝒘𝑻𝑿

Residual sum of squares as loss function for model optimization:

𝑳 𝒘 =෍

𝒊

𝒀𝒊 − 𝒇 𝑿𝒊; 𝒘
𝟐

Find new weights minimizing the Loss function:
𝒘∗ = 𝐚𝐫𝐠𝒎𝒊𝒏𝒘𝑳(𝒘)

Update weights for each incoming input/output pair

• Generalized model explaining relationship between input and output variables in all training samples.
• Test the model on unseen validation data.
→ How to improve the predictive power of the model?



27

Weights update regularization & bagging

→ Bagging: Bootstrap Aggregating: reduce variance of the model, 
without increasing systematic error of prediction:

- Ensemble of slightly different models
- Train a separate model on a subset of training data
- Average output of each predictor for the final output.

Too much “flexibility” in weights update can lead to overfitting

→ Regularization places constraints on the model parameters
- Trading some bias to reduce model variance

- Using L2-norm: 𝜴 𝒘 =෌
𝒊
𝒘𝒊
𝟐, adding the constraint 𝜶𝜴 𝒘 to 

the weights update rule: Ridge Regression

- The larger the value of 𝜶, the stronger the shrinkage and thus the 
coefficients become more robust.

[Bishop, “Pattern Recognition”]
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Simplified studies: optics deviations caused by circuits errors
- Training data: perturb the optics by changing the 

strength in the circuits (quadrupoles powered in series)
- Validation: simulations perturbed with errors in 

individual quadrupoles

Different algorithms are compared: Orthogonal Matching 
Pursuit, Random Forest, 
Convolutional Neural Network:
➢ Similar results 
➢ Linear Regression as baseline model:

– easier to interpret, 
– faster to train, 
– mostly linear effects are present in simulations.

➢ Increasing the complexity of simulations step by step 
by adding additional error sources, exploring 
limitations of regression models.

→ Correction results using Convolutional Neural Network are 
similar to Response Matrix.
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Training samples generated using MAD-X:
• Using nominal optics settings corresponding to settings used in uncorrected machine 
• Assigned magnetic errors: quadrupolar field errors, longitudinal displacement of 

quadrupoles, transverse misalignment of sextupoles, dipole field errors

• 1256 target variables
- assigned gradient errors in the all quadrupoles, both beams.

• 3304 input variables: simulated deviations from the design optics in betatron phase advance, 
normalized dispersion at all BPMs and β at BPMs next to Interaction Points.

- Adding realistic noise estimated from the measurements.

Data generation and model training

Selected model:
• Scikit-Learn implementation of Ridge Regression
• Bagging-estimator (combining 10 Ridge Regression – models, with regularization parameter α=0.001)
• 80000 training samples (divided into training and test sets)

Realistic training data to make adequate 
prediction from measurements.
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How to evaluate trained models?

• “ML point of view”: compare predicted magnet errors with corresponding true values.

• In terms of optics: 
ML-model input: optics perturbed with magnet errors to be predicted

ML- model output:  magnet errors estimated from optics perturbations

• Evaluating triplet (quadrupoles next to Interaction Points) and arcs 
magnet errors prediction separately: 

- local correction of the triplet is the most challenging part.
- generates largest optics perturbations
- translation of individual errors in the triplets into correction settings.

Figures of merit:
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Results on simulations: errors of prediction
➢ Comparison between true simulated and predicted errors 

Combining individual quadrupole errors 
according to the powering scheme in the LHC

Field errors in individual  magnets 
around Interaction Points 

systematic prediction error (bias) → 19%, 
random error (variance) ~ 30%. 

5% systematic prediction error 1% systematic prediction error
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Ideal optics +
predicted errors = reconstructed optics

→ Very good agreement between the optics 
simulated with true magnetic errors and 
simulations generated with the errors predicted 
by the model.

Ideal optics +
simulated errors = perturbed optics

Difference 
∆𝛽/𝛽𝑚𝑑𝑙?

Results on simulations: comparing resulting optics errors
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Results on experimental data: 2016 LHC commissioning
“Ground-truth” of magnet errors is unknown unlike simulations.
1. Use predicted magnet errors to simulate optics perturbation 
2. Compare produced simulation to actual measurement  
→ Residual error of measured optics reconstruction (≈ potential correction)
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Magnet errors predicted with ML-model reproduce the measured 
β –beating in uncorrected machine with average rms error of 7% and below 3% at IPs.

Results on experimental data: 2016 LHC commissioning
“Ground-truth” of magnet errors is unknown unlike simulations.
1. Use predicted magnet errors to simulate optics perturbation 
2. Compare produced simulation to actual measurement  
→ Residual error of measured optics reconstruction (≈ potential correction)
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III. Denoising and reconstruction of optics functions



Effect of the noise

36

➢ Prediction of magnetic errors in the arcs sections suffers from the presence of noise
➢ Simulations in the absence of noise: very high ML-model scores 
➢ Increasing prediction quality possible with more precise measurements of optics 

functions used as regression model input.

Model scores depending on the dispersion noise, 
phase advance noise is unchanged

Model scores depending on the phase advance 
noise (other input features are not used)
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• Training models on simulations data: full set of input features is always available
• Issues with using measurements as input to make new predictions:

- General: faulty BPMs →missing values at the location of cleaned BPMs
- Normalized dispersion and β at BPMs next to IPs: special measurements techniques are needed

→ Features are not always available e.g. depending on the measurement procedure.
→ Noise in the input data affects the prediction of the regression models significantly. 

How to deal with missing and noisy data?

Experimental data: possible issues
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• Training models on simulations data: full set of input features is always available
• Issues with using measurements as input to make new predictions:

- General: faulty BPMs →missing values at the location of cleaned BPMs
- Normalized dispersion and β at BPMs next to IPs: special measurements techniques are needed

→ Features are not always available e.g. depending on the measurement procedure.
→ Noise in the input data affects the prediction of the regression models significantly. 

How to deal with missing and noisy data? Denoising Autoencoder

Experimental data: possible issues

• A special neural network designed to 
reproduce given input as output of 
the network

• Neural Network: approximation of 
non-linear functions

Encoder: compressing the input data to lower dimensions​
Decoder: reconstructing the data into original input.

Applications:
- Denoising of data
- Dimensionality reduction
- Generative modeling
- Supervised and unsupervised learning
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• Training models on simulations data: full set of input features is always available
• Issues with using measurements as input to make new predictions:

- General: faulty BPMs →missing values at the location of cleaned BPMs
- Normalized dispersion and β at BPMs next to IPs: special measurements techniques are needed

→ Features are not always available e.g. depending on the measurement procedure.
→ Noise in the input data affects the prediction of the regression models significantly. 

How to deal with missing and noisy data? Denoising Autoencoder

Simulated optics observable 
+ noise
- observation at few locations

Original full set of 
optics observables 

Experimental data: possible issues
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➢ Input: simulated phase advance deviations given noise and replacing 10% of values with 0 (faulty BPMs)
➢ Output: original simulated phase advance deviations
➢ Autoencoder with 4 hidden layers, 10000 samples 

✓ Missing BPMs: possibility to obtain reliable 
estimation of the phase advance deviations at 
the location of faulty BPMs.

✓ Full set of phase advance deviations: 
reconstruction error is by factor 2 smaller than 
simulated realistic noise.

Reconstruction of missing values in a validation sample

Reconstruction and denoising of phase advance deviations
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Reconstruction of normalized dispersion from 
phase advance deviations

Simulation example: Beam 1

BPM index

• Input: simulated phase advance deviations given noise

• Output: normalized dispersion ∆𝐷x/√𝛽x

• Using linear regression model: Ridge Regression, 10 000 samples 

Simulated rms ∆𝑫x/√𝜷x : 0.0802 𝒎
RMS-error between simulation and reconstruction: 0.007 𝒎
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Reconstruction of 𝛽 from phase advance deviations

• Input: simulated phase advance deviations given 
noise (beam 1 and 2, horizontal and vertical planes)

• Output: ∆𝛽 errors at 2 BPMs left and right from 
IPs 1, 2, 5 and 8 (32 variables in total)

• Ridge Regression, 10 000 training samples

➢ Reconstruction error:  
𝛽𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑−𝛽𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑒𝑑

𝛽_𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑
= 1% 

Simulation: summary of 1000 seeds
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Conclusion and outlook
• Detection of faulty BPMs:
o Predefined rules and thresholds are not sufficient to identify faulty BPMs.
✓ Unsupervised Learning based cleaning technique became fully operational 

standard part of optics analysis 
✓ Identified previously unknown bad BPMs efficiently in 2018 without human 

intervention.

• Estimation of magnet errors and optics reconstruction:
o Optics corrections today are done in two steps (local and global).
✓ ML-models allow to predict all quadrupole errors for both beams 

simultaneously, local and global errors in one step
✓ Promising results on simulations and experimental data, especially for optics 

corrections in Interaction Regions (1 - 5% systematic error)
o Current limitations:

- Linear error sources in training simulations
- Prediction of arc magnet errors highly depends on the noise in the measured 

optics observables.

Summary of measurements in 2018, nearly all 
unphysical outliers can be removed by IF

Residual error for a correlated group of triplet 
quadrupoles



44

Conclusion and outlook
• Denoising and reconstruction of missing data:
✓ Successfully demonstrated on simulations the possibility reduce 

noise of phase advance measurements using autoencoder
✓ Reconstruction of missing features for the magnet errors 

prediction → re-training on available data is not needed
✓ Linear regression models to reconstruct optics observables from 

phase advance deviations
✓ Providing optics functions estimates, when time costly 

measurements techniques cannot be performed

• Outlook:
o Optics-independent model: mixed training set of simulations generated using different nominal optics settings
o Correction knobs from predicted individual errors
o Integration into operational LHC software infrastructure.



Thank you very much for your attention!


