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Outline

— Argonne Leadership Computing Facility
— Datascience (And machine learning) at ALCF
— Scaling Machine Learning for High Performance 

Computing
— Deep Learning for Neutrino Physics
— How to get HPC resources at ALCF – we want you to 

use these resources!
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Argonne Leadership Computing Facility

Theta Intel/Cray
4,392 nodes
281,088 cores
69 TiB MCDRAM
824 TiB DDR4
549 TB SSD
Peak flop rate: 11.69 PF

49,152 nodes
786,432 cores
786 TB RAM
Peak flop rate: 10 PF

Mira IBM BG/Q

ALCF offers different pipelines based on your computational readiness. Apply to the 
allocation program that fits your needs.

https://www.alcf.anl.gov

The Argonne Leadership Computing Facility provides 
world-class computing resources to the scientific 
community.
• Users pursue scientific challenges
• Resources fully dedicated to open science
• In-house experts to help maximize results

https://www.alcf.anl.gov/
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Argonne’s path to Exascale is critical to our nation’s 
scientific leadership

2021201720132007
557 TeraFLOPS 10 PetaFLOPS

ALCF4

2008 20xx

ALCF-1: Global climate simulations with 
1st generation coupled carbon and 
nitrogen components

ALCF-2: 1-km cloud resolving 
climate models with increased 
vertical resolution

ALCF-3: Prediction experiments on 
decadal time scales, 100 Km 
hydrological features

ALCF-4: Global cloud resolving 
ensemble simulations
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Computing Resources
Focus on Theta

Theta (Cray XC40)
• 11.69 PF Peak performance
• 4,392 nodes (281,088 cores) 

• 2nd Generation Intel® Xeon Phi™ Processor (Knights Landing)
• 843.264 TB DDR4 and 70.272 TB MCDRAM total memory
• 128 GB SSD on each node
• Cray Aries high speed interconnect in dragonfly topology
• 10 PB Lustre file system, ~200 GB/s throughput

Also available: Mira, as well as other visualization and analytics clusters, and storage systems

*
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Who Uses ALCF?
Allocation Distributions

50% INCITE
205 million 

node-hours in 
CY2018

Up to 20% ASCR Leadership 
Computing Challenge

10% Director’s Discretionary
Leadership-class computing

DOE/SC capability 
computing

Up to 20% Exascale 
Computing Program

Dedicated to Open 
Science.
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ALCF Data Science Program
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ALCF Data Science Program (ADSP) Overview

• Big Data science problems that require the leadership scale and performance
• Span computational, experimental and observational sciences
• Focus on data science techniques including but not limited to statistics, machine learning, deep learning, 

UQ, image processing, graph analytics, complex and interactive workflows
• Two-year proposal period and will be renewed annually. Proposals will target science and software 

technology scaling for data science
• The program started in 2016 and now in the 3rd year
• Yearly call for proposal. 

Next deadline – ~June 2019
• https://www.alcf.anl.gov/alcf-data-science-program
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ALCF Data Science Program (ADSP)
Targets Data & Learning Pillars

 Data
• Deep learning
• Machine learning steering simulations

• Parameter scans
• Materials design
• Observational signatures

• Data-driven models and refinement 
for science using ML/DL

• Hyperparameter optimization
• Pattern recognition
• Bridging gaps in theory

 Learning
• Experimental/observational data

• Image analysis
• Multidimensional structure discovery

•Complex and interactive workflows
•On-demand HPC
•Persistent data techniques

• Object store
• Databases

•Streaming/real-time data
•Uncertainty quantification
•Statistical methods
•Graph analytics Big Data
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datascience@alcf.anl.gov 

Corey Adams Xiao-Yong Jin Murat Keceli Elise 
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Mayagoitia

Tom Uram

Taylor Childers

Venkat VishwanathWilliam Scullin

Prasanna 
Balaprakash

Ganesh 
Sivaraman

Richard Zamora

Adrian Pope Misha Salim 

Antonio Villarreal

Bethany Lusch

Murali Emani

Huihuo Zheng
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Deep
Learning

Scalable 
Data 

Analytics
Large-Scal

e
Numerical 
Simulation

Integration of Simulation, Data Analytics and Machine 
Learning on supercomputers

CORAL 
Supercomputers

and Exascale 
Systems

Traditional
HPC

Systems
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Aurora 2021 - The first US Exascale System

Architecture supports three ways of computing
• Large-scale Simulation (PDEs, traditional HPC)
• Data Intensive Applications (scalable science pipelines)
• Deep Learning and Emerging Science AI (training and inferencing)
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Machine Learning and High 
Performance Computing

Argonne Leadership Computing Facility14
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Machine Learning and HPC

Time to Solution (Training) – with scalable learning techniques, you 
can process more images per second, reduce the time per epoch, and 
reach a trained network faster.

Quality of Solution – with more compute resources available, you can 
perform hyperparameter searches to optimize network designs and 
training schemes.  With powerful accelerators, you can train bigger and 
more computationally intense networks.

Inference Throughput – with high bandwidth IO, it is easy to scale 
up the throughput of inference techniques for deep learning.

Accelerate and improve an application’s: 

High Performance Computing can 
improve all aspects of training and 
inference in machine learning.
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Machine Learning and HPC – KNL Nodes
Single Node Performance Matters!
Running a model on an HPC node is often not 
like a standard GPU – many configuration 
parameters matter, not all models have the 
same optimum parameters.

config = tf.ConfigProto()
config.intra_op_parallelism_threads = num_intra_threads
config.inter_op_parallelism_threads = num_inter_threads
tf.Session(config=config) 

Intel KNL != Nvidia GPU, but KNL can be powerful.

https://www.tensorflow.org/guide/
performance/overview

intra_op_parallelism_threads: Nodes that can use 
multiple threads to parallelize their execution will 
schedule the individual pieces into this pool.
inter_op_parallelism_threads: All ready nodes are 
scheduled in this pool.
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Machine Learning and HPC – KNL Nodes
Affinity can play a large role

KMP_AFFINITY=granularity=fine,verbose,compact,1,0 Intel Affinity Guidelines

KMP_BLOCKTIME=0 is optimal for KNL Nodes

https://software.intel.com/en-us/articles/tips-to-improve-performance-for-popular-deep-learning-frameworks-on-multi-core-cpus
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Machine Learning and HPC – KNL Nodes
Batch Size can be important

Bigger batch size often yields more images/second 
throughput (though not always), but the downside is 
always more seconds/global step at a large batch size.

Batch Size Dependence

Inception3

Resnet50

AlexnetRunning a model on an HPC node is often not 
like a standard GPU – many configuration 
parameters matter, not all models have the 
same optimum parameters.
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Distributed Learning
Machine learning is a very important workflow for current and future supercomputing systems.
How can you accelerate learning with more computing power?

Image from Uber’s Horovod: https://eng.uber.com/horovod/



Argonne Leadership Computing Facility20

What is Distributed Learning?
A technique to accelerate training

Data Parallel learning – with N nodes, replicate your model on each node.  
After the forward and backward computations, average the gradients across all 
nodes and use the averaged gradients to update the weights.  Conceptually, 
this multiplies the minibatch size by N.

Model Parallel Learning – for models that don’t fit on a single node, you can 
divide a single model across multiple locations.  The design of distributing a 
model is not trivial, but tools are emerging.

Both (“Mesh” training) – Using n nodes for a single model, and N = k*n nodes 
for distributed training, you can achieve accelerated training of extremely large 
or expensive models.

The backpropagation algorithm is unchanged at it’s heart.
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Data Parallel Learning

Image from Uber’s Horovod: https://eng.uber.com/horovod/

Each Model gets unique 
input data and performs 
calculations 
independently.

All nodes communicate to average gradients.

Each Node gets it’s own 
copy of the model.

Training Process

Model Gradients Averaged 
Gradients

IO/Storage

Training Process

Model Gradients Averaged 
Gradients

Training Process

Model Gradients Averaged 
Gradients
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Data Parallel Learning

Image from Uber’s Horovod: https://eng.uber.com/horovod/

Each Model gets unique 
input data and performs 
calculations 
independently.

All nodes communicate to average gradients.

Each Node gets it’s own 
copy of the model.

Training Process

Model Gradients Averaged 
Gradients

IO/Storage

Training Process

Model Gradients Averaged 
Gradients

Training Process

Model Gradients Averaged 
Gradients

Scaling Challenges

IO requires organization 
to ensure unique batches.

IO contention with many 
nodes requires parallel 
IO solutions

Computation stalls during communication: 
keeping the communication to computation ratio 
small is important for scaling.

Initialization must be 
identical or synchronized, 
and 
checkpointing/summary 
information must be 
managed with just one 
node.
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Data Parallel Learning

Image from Uber’s Horovod: https://eng.uber.com/horovod/
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Data Parallel Learning
Horovod

1. Initialize horovod ( hvd.init() ).

2. Wrap the optimizer in hvd.DistributedOptimizer.

1. This uses the underlying optimizer for gradient calculations, and performs an averaging 
of all gradients before updating.

2. Can adjust the learning rate to account for a bigger batch size.

3. Initialize the networks identically, or broadcast one network’s weights to all others.

4. Ensure snapshots and summaries are only produced by one rank.

Horovod focuses on handling collective communication so you don’t have to, but let’s you 
use all of the tools of your favorite framework.  Compatible with mpi4py.

The simplest technique for data parallel learning

Horovod is an open source data 
parallel training software compatible 
with many common deep learning 
frameworks.

Meet Horovod
Github

https://eng.uber.com/horovod/
https://github.com/horovod/horovod
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Horovod Example Code
Tensorflow
import tensorflow as tf
import horovod.tensorflow as hvd
layers = tf.contrib.layers
learn = tf.contrib.learn
def main(): 
    # Horovod: initialize Horovod.
    hvd.init()
    # Download and load MNIST dataset.
    mnist = learn.datasets.mnist.read_data_sets('MNIST-data-%d' % hvd.rank())
    # Horovod: adjust learning rate based on number of GPUs. 
    opt = tf.train.RMSPropOptimizer(0.001 * hvd.size())
    # Horovod: add Horovod Distributed Optimizer
    opt = hvd.DistributedOptimizer(opt)
    hooks = [ 
        hvd.BroadcastGlobalVariablesHook(0), 
        tf.train.StopAtStepHook(last_step=20000 // hvd.size()),
        tf.train.LoggingTensorHook(tensors={'step': global_step, 'loss': loss},
                                   every_n_iter=10),
    ]
    checkpoint_dir = './checkpoints' if hvd.rank() == 0 else None
    with tf.train.MonitoredTrainingSession(checkpoint_dir=checkpoint_dir,
                                           hooks=hooks,
                                           config=config) as mon_sess 
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Horovod Example Code
Pytorch
import torch.nn as nn
import horovod.torch as hvd
hvd.init()
train_dataset = datasets.MNIST('data-%d' % hvd.rank(), train=True, download=True,
                    transform=transforms.Compose([
                        transforms.ToTensor(),
                        transforms.Normalize((0.1307,), (0.3081,))
                    ]))
train_sampler = torch.utils.data.distributed.DistributedSampler(
    train_dataset, num_replicas=hvd.size(), rank=hvd.rank())
train_loader = torch.utils.data.DataLoader(
    train_dataset, batch_size=args.batch_size, sampler=train_sampler, **kwargs)
# Horovod: broadcast parameters.
hvd.broadcast_parameters(model.state_dict(), root_rank=0)
# Horovod: scale learning rate by the number of GPUs.
optimizer = optim.SGD(model.parameters(), lr=args.lr * hvd.size(),
                      momentum=args.momentum)! 
# Horovod: wrap optimizer with DistributedOptimizer.
optimizer = hvd.DistributedOptimizer(optimizer, named_parameters=model.named_parameters())
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Horovod Example Code
Keras
import keras
import tensorflow as tf
import horovod.keras as hvd
# Horovod: initialize Horovod.
hvd.init()
# Horovod: adjust learning rate based on number of GPUs. 
opt = keras.optimizers.Adadelta(1.0 * hvd.size())
# Horovod: add Horovod Distributed Optimizer.
opt = hvd.DistributedOptimizer(opt)
model.compile(loss=keras.losses.categorical_crossentropy,
              optimizer=opt,
              metrics=['accuracy'])
callbacks = [
    # Horovod: broadcast initial variable states from rank 0 to all other processes.
    hvd.callbacks.BroadcastGlobalVariablesCallback(0),
]
# Horovod: save checkpoints only on worker 0 to prevent other workers from corrupting them.
if hvd.rank() == 0:
    callbacks.append(keras.callbacks.ModelCheckpoint('./checkpoint-{epoch}.h5’))
model.fit(x_train, y_train, batch_size=batch_size,
    callbacks=callbacks,
    epochs=epochs,
    verbose=1, validation_data=(x_test, y_test))
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Effects of Distributed Learning
1. Increased Batch size means improved estimate of gradients.

1. Scale by N nodes?  Sqrt(N)?

2. Scale in a layerwise way? Layerwise Adaptive Rate Scaling (LARS)

2. Increased learning rate can require warm up iterations.

1. Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour

3. Bigger minibatch means less iterations for the same number of epochs.

1. May need to train for more epochs if another change is not made like boosting the 

learning rate.

https://arxiv.org/pdf/1708.03888.pdf
https://arxiv.org/pdf/1708.03888.pdf
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Mesh Learning
Tensorflow Mesh

Why might you need a Mesh?

• Memory limitations due to network size (number of parameters)

• Memory limitations due to input size (massive images, etc)

Mesh Scaling is not trivial:

• Computations need to be distributed in an intelligent way to prevent idle nodes

• Communication needs to happen frequently during both the forward/backward pass

• Message passing organization details arise from forward/backward small-group 
communications and multi-group communications

Expect mesh scaling to get easier over the next few years (or wait for bigger, more 
powerful nodes!)

When data-parallel isn’t enough…

https://github.com/tensorflow/mesh
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Neutrino Physics @ ALCF

Argonne Leadership Computing Facility30
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A Crash Course in Neutrino 
Physics
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Particle Physics - Building Blocks

Everything we know about is made from these particles

Proton = U + U + D
Neutron = U + D + D

+ electron + photon

= ALL conventional matter

"Sewing the fabric of spacetime"
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Particle Interactions

Particle Interactions are really just the exchange of 
mediating particles. 
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Basic Rules
Fundamental Particles follow basic rules:

1. Anything not forbidden is allowed.
2. Things that are forbidden are forbidden by 

"conservation" laws.
1. Traditional conservation laws: conservation of 

momentum, energy, charge, etc...
2. Particle Physics conservation laws: conservation of 

"lepton" number, "baryon" number, "flavor", "color", 
...

Neutrinos are one of the biggest rule breakers in the 
Universe.
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Neutrino Oscillations
Neutrinos are super weird!

Over time, an electron 
stays as an electron.

An electron neutrino can 
turn into a muon neutrino

Measuring the frequency and strength of the "oscillations" 
tells a LOT about neutrinos. 

And back!
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Why Study Neutrinos?

36

Are neutrinos their own antiparticles? 

Do neutrinos explain the matter/antimatter asymmetry in 
the Universe?

Are there more than 3 types of neutrinos?

Could new type of neutrinos explain dark matter?

Why is the neutrino mass so much less than other particles?
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Liquid Argon Time Projection Chambers
The modern neutrino detector of choice for high energy physics is the Liquid Argon Time 
Projection Chamber.
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Liquid Argon Time Projection Chambers
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“Projection” Chamber – top down
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“Projection” Chamber – angle 1
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“Projection” Chamber – angle 2
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3 Projections of Same Objects

Liquid argon time projection chambers are the detector-of-choice for high energy physics experiments

1. Argoneut (Fermilab, Decommissioned)
2. Lariat (Fermilab Testbed, Running)
3. MicroBooNE (Fermilab Running)
4. SBND (Fermilab, Construction)
5. ICARUS (Fermilab/INFN, Assembly)
6. ProtoDUNE SP (CERN, Running)
7. ProtoDUNE DP (CERN, Assemly)
8. DUNE ND (Fermilab, Design) – pixel readout
9. DUNE FD (Sanford Lab, SD, Design)

Many other physics experiments that need 
fine-grained tracking and detailed calorimetry use 

similar time projection chamber technology.

Novel designs will replace the sense wires with 
pixel planes for intrinsically 3D imaging.
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Promising Technology for applications of Deep 
Learning and HPC
Large data size ( O(10^7) pixels per image – for example, 1260 x 2048 pixels, 3 images = 1 Event) 
Huge datasets (millions of images of both simulated and real data, per experiment)
Multiple fundamental science applications from neutrino oscillations, proton decay searches, 
beyond-standard-model physics searches
Multiple deep learning techniques directly applicable

Electron vs Photon (Classification)
JINST 12, P03011 (2017).

A Deep Neural Network for Pixel-Level Electromagnetic Particle Identification in 
the MicroBooNE Liquid Argon Time Projection Chamber

http://iopscience.iop.org/article/10.1088/1748-0221/12/03/P03011/meta;jsessionid=1238492A9F6846527EFC3137FF9741FD.c4.iopscience.cld.iop.org
https://arxiv.org/pdf/1808.07269.pdf
https://arxiv.org/pdf/1808.07269.pdf
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More Data, More Problems

CERN

Large scale, high resolution detectors don't fit into any 
successful paradigm of analysis.

For the MicroBooNE detector (Fermilab): 
Each event is ~40MB of raw data for ~5ms of 
data. 8 GB/s of data (almost 30 TB per hour!)

Not feasible!

Need to develop a fast, automated pattern 
recognition.
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More Data, More Problems

45

Large scale, high resolution detectors don't fit into any 
successful paradigm of analysis

UC Irvine Physical Sciences

Complex data requires complex pattern recognition.
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Physicist vs. The Machine

Original Physicist Network

ICPF = Incorrectly Labeled Pixel Fraction.
No classical algorithm achieves this accuracy.  Machine Learning out performs 

physicist hand labels.
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Cross Plane Information - Classification

How to best utilize multiplane detectors?

Correlations across projections are correlated and learnable.
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Cosmic Tagging

Cosmic muon backgrounds are problematic.

Short Baseline Near Detector (FNAL)

For detectors on the surface of the earth, the 
particles that produce ionization from neutrino 
interactions (electrons, protons, muons, photons 
…) are the same ones that produce ioninzation 
from cosmic rays.

The signatures in the detector are 
indistinguishable without pattern recognition, but 
cosmic particles are much more common (many 
orders of magnitude)
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Cross Plane Information

Network
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Cross Plane Information - Segmentation

How to best utilize multiplane detectors?

Correlations across projections are correlated and learnable.
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Multiplane Segmentation

Original Prediction Truth

Network Input Network Output
(No cosmics!)
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Segmentation: Zoom on the Neutrino

Original Prediction Truth

Neutrino passing rate: 80%
Background-only:  6%

Neutrino Purity: 89%
There is no corresponding classical algorithm 
that achieves this result.
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Natively 3D Detectors
Most LArTPCs at large scale are multi projection, 2D 
detectors - but pixelated, 3D detectors are coming.

An obvious question: are the performance gains worth the 
extra costs?

12mm / 
voxel

3mm / 
voxel

4x better resolution is 16x 
more in electronics and 

DAQ hardware

Deep Learning offers a way to quickly 
evaluate a configuration and measure it’s 

physics reach, in order to measure the 
performance gains of a configuration vs. 

expected costs.
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Sparse vs. Dense Convolutions
Deep learning in neutrino datasets could benefit dramatically 
from an intelligent application of sparse techniques to 
machine learning.

• Save memory by not storing activations on empty pixel 
sites

• Save computations by ignoring non-active sites.
Neutrino images from liquid 
argon time projections chambers 
are very sparse.

Occupied pixel fraction is:

< 0.01 in 2D at 5122 pixels

< 5e-5 in 3D at 5123 pixels
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Sparse Machine Learning Implementations

1. SBNET (from Uber) - inference only gains in speed by only 
feeding forward active blocks of input.

2. OctNet - sparse convolutions with tree based organization for 
sparse convolutions

3. Sparse 3D Conv. Nets - hashmap based convolutions for managing 
sparse representations

4. Submanifold Sparse Convolutional Networks - follow up on 3, 
deals with dilation as well.

5. (PointNet - graph network that works OK on sparse data)
6. (Dynamic Graph CNN - graph network with convolution-like 

operation)

Details vary, but there is some literature on convolutional neural networks 
on spatially sparse data.

https://arxiv.org/abs/1801.02108
https://arxiv.org/abs/1611.05009
https://arxiv.org/abs/1611.05009
https://arxiv.org/abs/1706.01307
https://arxiv.org/abs/1612.00593
https://arxiv.org/abs/1801.07829
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Submanifold Sparse Convolutional Networks

• Sparse Convolutions operate only on active input sites, but 
behave traditionally on the output layer.

• Submanifold Sparse Convolutions maintain the same set of 
active sites on the input and output layers (and are “valid” - no 
change to spatial size)

• Sparse Deconvolutions invert sparse convolutions by reversing 
the mapping from input to output of a sparse convolution, useful 
in UNet or FCN segmentation architectures.

This technique brings three new convolution operators that differ from 
traditional convolutions:
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Sparse Convolutional
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Submanifold Sparse Convolutional
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Sparse/Dense Comparison

Roughly 18x speedup in training on identical batch sizes, 58x speedup in peak 
single-GPU throughput.
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Sparse/Dense Comparison

60 Epochs (40 in 3D) on 64 GPUs in just 4 hours! Approaches state-of-the-art 
performance, quantitative study starting to benchmark accuracy of dense vs. sparse 

implementations.
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Sparse Convolutions

Relatively niche computer vision application could be very impactful in particle 
physics:
• Dramatic speed up of both training and inference times

• Substantial reduction of memory impact means less powerful machines can perform 

inference

• Scalable to CPUs of open science grid

• Neutrino datasets can feed back to the computer vision community for development 

of new techniques (instance detection?) with sparse convolutions.
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Where is the field going?
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Full Event Pattern Recognition

Instance aware, cross-plane particle segmentation.

Already, successful demonstrations of segmentation, instance 
aware predictions, and multi-plane networks have succeeded.
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Online Triggers

MicroBooNE data rate is ~8 GB/s.  New detectors will only 
be bigger and faster - how to keep up with the data stream?

Background Only Neutrino Interaction

Requires a different data pipeline, but is feasible for 
future experiments.

Deep convolutional neural networks offer a 
way to dramatically reduce background data 
in an online manner, within a DAQ system.
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Rare Event Searches

In the Deep Underground Physics Experiment, there are 
exciting physics studies to do that require powerful analysis 

techinques.

Proton Decay neutron to 
anti-neutron 
oscillation

J. Hewes Thesis, 2017 (http://inspirehep.net/record/1662648)
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Collaborative Development
Many experiments (and many students!) are interested in deep learning, but applications to 

neutrino physics are still emerging and common tools unavailable.

Response: deeplearnphysics.org to share open source development:

• Open source data format (and open data set)

• OpenGL Interactive Visualization Tools

• Open source network implementations

• Extensive Tutorials

• Slack channel for news, questions, etc.

• Cross-experimental meetings
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DeepLearnPhysics
When Professor-of-Physics wants their new student to use 

deep learning in their thesis, where to turn?

Open Data Set

• Freely available data 
from authentic neutrino 
simulation 

• Tutorials and 
walkthroughs on how to 
generate 
application-specific 
datasets

Model Zoo

• Open source 
implementations of 
important networks for 
physics

• Evaluation and 
pre-trained weights for 
open data

Goal: Papers released early 2019
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Open Data Set
• Data set is public
• Descriptive Paper is in 2nd 

draft
• Model zoo is coming!

https://osf.io/tswnx/
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DUNE
Neutrino Physics is investing into large, liquid argon imaging 

detectors.

Deep learning will be THE tool that meets the science needs 
of DUNE.
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Your Science @ ALCF

Argonne Leadership Computing Facility71
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Three primary ways for access to LCF
Distribution of allocable hours

50% INCITE
205 million 

node-hours in 
CY2018

Up to 20% ASCR Leadership 
Computing Challenge

10% Director’s Discretionary
Leadership-class computing

DOE/SC capability 
computing

Up to 20% Exascale 
Computing Program

Allocations 
switching from 
cores-hours to 
node-hours
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Software
● ML/DL:  

● TensorFlow, Keras, Neon, MXNet, PyTorch, Sci-kit 
Learn, Graph Analytics (Cray Graph Engine), 
Horovod…

● With performance libraries e.g. Intel MKL, MKL-DNN, 
LibXSMM etc enabled

● Intel optimized Tensorflow
● Conda package on Theta 
● Intel Distribution for Python’s optimized numpy
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Software
● Workflow/Data analysis: 

● Containers 
● Singularity container solution for application science workloads
● Environment imported into container
● mount additional directories into the container with the -B flag
● aprun  -n $RANKS -N 1  singularity exec my_image.img ./my_binary

● Balsam
● Jupyter Hub, MongoDB, Apache Spark, R
● Python

●  Intel and Cray modules on Theta
●  ALCF alcfpython/2.7.14-20180131

● Visualization: Paraview on Theta
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BALSAM Workflow manager and edge serviceS 
for alcf systems

The Impact
•Delivered >150M Core hours for production 
science on ALCF systems

•The ATLAS experiment has used Balsam to 
run hundreds of millions of compute hours 
of event generation jobs on ALCF systems. 
ALCF contribution to ATLAS computing ranks 
as the 6th largest country in the world.

•The DIII-D National Fusion Facility used 
Balsam to trigger experiment-time analyses 
during Tokamak operation, running more 
complex analyses in less time, leading to higher 
experiment productivity

•We are investigating use of Balsam for several 
other projects, including real-time APS/ALCF, 
and in ADSP and ECP projects

https://www.alcf.anl.gov/balsam
message
queue

HEP

ALCF-Mira

message
queue

Balsam
(service)

Balsam
(supervisor)

scheduler
(Cobalt)

message
queue

HEP-local cluster

Balsam
(service)

scheduler
(HTCondor)

particle 
showering job

description

HEP-local cluster

Balsam
(service)

scheduler
(HTCondor)

phase-space
integration job

description

event
generation job

description
message
queue

1

2

3

Schematic of ATLAS deployment of Balsam on multiple resources to execute a 
workflow with alternating serial and parallel stages

Balsam is a workflow manager that simplifies the task of 
running large-scale job campaigns on ALCF resources while 
minimizing user involvement and improving productivity.  
It interacts closely with job schedulers to optimize job 
throughput via individual jobs and ensemble jobs, staging data 
in and out as needed.  A supervisor component manages 
execution across multiple compute resources. 

https://www.alcf.anl.gov/balsam
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– Development of DL algorithms is  time consuming and a 
significant portion is spend on tuning and optimizing the 
hyperparameters such as number of layers number of units 
learning rate optimizer epochs,

– Model-based search iteratively refines the model in promising 
input region by obtaining new outputs at unevaluated input 
configurations

– Framework:
• Initialization phase

▪ Random or Latin hypercube  sampling
• Iterative phase

▪ Fit model
▪ Sample using the model

– Integration with the Balsam workflow enables for improved 
used productivity and performance. This facilitates job 
submission, data staging, model checkpointing, resource 
allocation, etc. Scaled to 1024 Theta nodes and 64 Cooley 
nodes

Example Surrogate Model Fitted to Sampled Performance
(iterative refinement improves the learning model)

DeepHyper: Scalable hyperparameter search for deep learning
P. Balaprakash, E. Jennings, M. Salim, T. Uram, S. Wild, V. Vishwanath
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Map To Allocation Programs
Program
INCITE Production Capability Computing

ALCC Production SC Capability Computing missions driven

Discretionary Production Development, testing, proposal preparation

Data Science Program Production Developing technical and science capability for 
data and learning based workflows

Early Science Program Next Generation Developing technical and science capability for 
next generation systems

Exascale Computing 
Projects

Next Generation The ECP mission-driven

https://www.alcf.anl.gov/user-guides/how-get-allocation

https://www.alcf.anl.gov/user-guides/how-get-allocation
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ALCF User Training Workshops and Opportunities

Most Recently: October 2-4, 2018

April 30 - May 2, 2019 Registration

https://www.alcf.anl.g
ov/training

 Argonne Training Program on 
Extreme-Scale Computing (ATPESC) 
https://extremecomputingtraining.anl.go
v/application/ 

https://www.alcf.anl.gov/workshops/2019-alcf-computational-performance-workshop
https://extremecomputingtraining.anl.gov/application/
https://extremecomputingtraining.anl.gov/application/
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Thank You!!!

Feel free to contact us:
corey.adams@anl.gov
datascience@alcf.anl.gov

https://www.alcf.anl.gov/alcf-data-science-program

mailto:corey.adams@anl.gov
mailto:datascience@alcf.anl.gov
https://www.alcf.anl.gov/alcf-data-science-program
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Extra Materials
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Finding Neutrinos
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First Steps: Nova

The Nova experiment trained a 
modifed version of AlexNet to 

classify their neutrino 
interactions by type of neutrino.

The convolutional neural network performed as well 
or better than traditional pattern recognition in all 

cases.

The primary physics search saw an efficiency boost of 
40%.

"A Convolutional Neural Network Neutrino Event Classifier" 
(https://arxiv.org/abs/1604.01444)
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MicroBooNE: Particle ID
Sample Electron Photon Muon Pion Proton
Detection 
Accuracy (%) 77.8 +/- 0.7 83.4 +/- 0.6 89.7 +/- 0.5 71.0 +/- 0.7 91.2 +/- 0.5

Most 
frequuent 
MisID (%)

γ (19.9) e- (15.0) π- (5.4) μ- (22.6) μ- (4.6)

Using AlexNet, can individual particles be distinguished?  Yes...   
JINST 12, P03011 (2017).

Electron Photon

http://iopscience.iop.org/article/10.1088/1748-0221/12/03/P03011/meta;jsessionid=1238492A9F6846527EFC3137FF9741FD.c4.iopscience.cld.iop.org
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MicroBooNE: Particle ID
Sample Electron Photon Muon Pion Proton
Detection 
Accuracy (%) 77.8 +/- 0.7 83.4 +/- 0.6 89.7 +/- 0.5 71.0 +/- 0.7 91.2 +/- 0.5

Most 
frequuent 
MisID (%)

γ (19.9) e- (15.0) π- (5.4) μ- (22.6) μ- (4.6)

ElectronPion Muon Proton

Using AlexNet, can individual particles be distinguished?  Yes...   
JINST 12, P03011 (2017).

http://iopscience.iop.org/article/10.1088/1748-0221/12/03/P03011/meta;jsessionid=1238492A9F6846527EFC3137FF9741FD.c4.iopscience.cld.iop.org
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MicroBooNE: Particle ID

Pion Muon Proton

Electron Photon
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Semantic Segmentation

A Deep Neural Network for Pixel-Level Electromagnetic Particle Identification in the MicroBooNE Liquid 
Argon Time Projection Chamber

(https://arxiv.org/pdf/1808.07269.pdf)
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Semantic Segmentation

In uncrowded 
interactions, this is 
enough to augment 

traditional track-fitting 
algorithms.

How do you evaluate 
performance on data?
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Data Validation
Even with hand-labeling, how to find a benchmark data set?

Leverage existing physics analyses for network valdiation.

Cosmic Muon Decay Events

Comparison between network 
labels and physicist labels.
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Data Validation
Even with hand-labeling, how to find a benchmark data set?

Leverage existing physics analyses for network valdiation.

Ev
en

t 1
Ev

en
t 2

Original Physicist Network
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Physicist vs. The Machine

Original Physicist Network
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Point Prediction 
Network features for 
track/shower 
identification should 
also be useful for 
instance aware tasks.  

Can a Region Proposal 
Network predict the 
start and end points of 
each particle?
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Point Prediction 
Network features for 
track/shower 
identification should 
also be useful for 
instance aware tasks.  

Can a Region Proposal 
Network predict the 
start and end points of 
each particle?

Yes
L. Domine, K. Terao, SLAC
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Segmentation in 3D
Meanwhile, extending segmentation networks to 3D has 

proven feasible and results are encouraging:

Better resolution gives better results, but GPU memory 
rapidly becomes an issue - difficult to train.
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Convolution Implementation
Given a set of sparse input, in an N dimensional volume, the input data is represented 
as m features over a active locations and a coordinates in N dimensional space.

1. Build a hashmap to convert a spatial coordinate into an array index. Map 
each N dimensional active location to a single row index in an a x m matrix.

2. For each spatial location in a filter (3x3 = 9 locations, for example), create a 
list for each spatial (input, output) pair for that filter location.

1. Submanifold convolutions enforce output locations to be in the input 
feature set, sparse convolutions allow all valid output locations

3. For input location i that maps to output location j, perform the matrix 
multiply of the (input row i )*(m x n)  filter for that spatial location, and add 
it to output row j.


