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Molecular dynamics simulations (existing or new)

contain a wealth of data.

I 1000s of atoms

I 1000s of reactions

I 100s of molecules

I 1000s of timesteps per
picosecond simulation

Can we do more with this complex, expensive DATA?
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We propose using statistical learning to learn a chemical

reaction network from atomistic simulation data.

I We discover that it’s possible to build kinetic Monte Carlo (KMC)
models from a single or few MD simulations that can extrapolate
the dynamics of the chemical system more than 10x in time and in
chemical space.

I We develop a new data-driven method that reduces thousands of
reactions to fewer than a hundred in a matter of minutes.
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We project molecular dynamics data onto a model

consisting of elementary reactions and reaction rates.
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Fig. 2 Six independent molecular dynamics simulations of the same
system under the same thermodynamic conditions, resulting in
somewhat different molecular concentration trajectories due to different
initial velocities. Each colored line corresponds to a projected molecular
concentration trajectory derived from a single molecular dynamics
simulation. The dotted black line corresponds to the mean of these
trajectories. We see that although the general trends are the same
across simulations, the number of molecules at any given time can
fluctuate between simulations. The average difference (in the root mean
square sense) between each molecular concentration trajectory and the
mean trajectory is about 8.0, 5.9, and 3.3 molecules for CH4, H2, and
C2H6, respectively.

spie Simulation Algorithm to satisfy the chemical master equa-
tion.

3.1 Bond Length and Duration Criteria
From the time series of atomic positions given by the molecu-
lar dynamics simulation, we identify molecular species and corre-
sponding chemical reactions. Atoms are considered to be bonded
if their distance is below a given threshold for a given duration
of time, �. Similarly, previously bonded atoms are not considered
unbonded unless their distance is above a given threshold for a
time period of �. A schematic of this bond duration criteria is
shown in Figure 3. The bond length criteria we used is reported
in previous work24: 1.98 Angstroms for C-C, 1.09 Angstroms for
H-H, and 1.57 Angstroms for C-H. These values were obtained
from radial distribution functions under similar thermodynamic
conditions using the same potentials.

The bond duration criteria � has an important effect on the
chemical reaction network obtained. We note that it is important
to choose � such that the bond duration is short enough for all
reactions to be considered elementary, but also long enough such
that atomic vibrations that happen to extend past the given bond
length are not included as reactions25. Different bond duration
criteria lead to different molecular concentrations, chemical reac-
tions, and reaction rates. In particular, one naive way to reduce
the number of distinct reactions observed, and thus the apparent
complexity of the chemical system, is to increase �; in the limit of
infinite �, no reactions will be observed.

Figure 4 shows how the number of unimolecular, bimolecular,
and other reactions observed in a single molecular dynamics sim-
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Fig. 3 Schematic of how bond duration � is used to smooth out the
signal of whether or not atoms are bonded. Two atoms are not
considered bonded unless the bond has endured for � timesteps. Two
atoms that were previously bonded are not considered unbonded unless
the bond has been broken for � timesteps. Note that as � increases,
fewer events are detected.

ulation varies with � (the counts are averaged over the six inde-
pendent MD simulations computed). Note that there are a small
number of trimolecular reactions, but only a nominal number of
more complex reactions. Generally in the gas phase, elementary
reactions are no more than bimolecular. In the high temperature
high pressure liquid phase, it may be possible for trimolecular and
higher order reactions to occur, but a large number of higher or-
der elementary reactions is unlikely. Atomic vibrations are likely
to account for many of the observed reactions at small �.
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Fig. 4 As the chosen bond duration � increases, there are fewer of all
types of reactions, thus decreasing the overall complexity of the system.
For small �, it is likely that many of the observed reactions actually
correspond to atomic vibrations. Note that in our high pressure, high
temperature system, some trimolecular and more complex reactions
may reasonably be considered elementary.

For each value of �, we observe a set of reactions from the
molecular dynamics trajectory and use maximum likelihood es-
timation (discussed below) to derive a corresponding set of re-
action rates. This gives us a different stochastic model for each
value of �. Choosing the optimal value of � is therefore a model
selection problem: we select � to maximize the agreement be-
tween the molecular dynamics simulation and the corresponding
stochastic model. Figure 6 shows how the choice of � affects the
error between the molecular concentrations computed from the
molecular dynamics simulation and that simulated by the corre-
sponding full stochastic model (we discuss in detail how error is
computed below). The errors are averaged over the individual
stochastic models corresponding to each of the 6 MD trajecto-
ries. Error for the three highest concentration stable molecules
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Elementary Reactions and Reaction Rates
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Bond duration is used to control bias-variance tradeo↵

in our model
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We model chemical reaction networks as a set of

elementary reactions and reaction rates governed by

the chemical master equation.

Reactions are random events. We associate with every reaction a
propensity function, aj(x), such that aj(x)dt gives the probability of
that reaction occurring in the time interval [t, t + dt).

I Unimolecular reactions X1 ! products: aj(X) = kjX1

I Bimolecular reactions 2X1 ! products: aj(X) = kjX1(X1 � 1)

I Bimolecular reactions X1 + X2 ! products: aj(X) = kjX1X2

The chemical master equation is a system of ODEs that gives the
probability P(x, t) of being in a particular state X(t) = x in molecular
concentration space at time t.
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We use Maximum Likelihood Estimation to estimate

reaction rates

In a given MD simulation with M unique species and R unique reactions,
we observe at every timestep t:

1. vector of molecule counts X(t) = (x1(t), ..., xM (t))

2. vector of reaction counts R(t) = (r1(t), ..., rR(t))

For t � 1, we can consider X(t) as a function of X(0) and all of the
previous R(t0) for t0 < t, so that our set of observations for timesteps 1
to T are

(X(0),R(0), ...,R(T � 1))

For N independent MD simulations, we estimate the vector of reaction
rate constants k = (k1, ..., kR) by maximizing the likelihood of the
observations:

k⇤
= max

k
L(k; (X(0),R(0), ...,R(T�1))1, ..., (X(0),R(0), ...,R(T�1))N )
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We simulate the chemical master equation using kinetic

Monte Carlo

Given a reaction network with thousands of reactions and reaction rates,
Gillespie Stochastic Simulation is equivalent to kinetic Monte Carlo and
can be used to simulate the chemical master equation exactly.

At each step:
I Choose the next reaction based on the propensity functions for

each reaction.
I Choose the time until the next reaction.
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Our KMC simulations take minutes
to model the MD data that took
weeks to generate.
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We show that the chemical reaction network can be

significantly reduced when describing target molecules.
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Model reduction of complex systems is a formidable technical challenge:
I Sensitivity Analysis
I Mixed Integer Programming
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We represent chemical reaction networks as a linear

system in the set of reactions

Consider the toy reaction network:

A + B ! C (1)

A! 2C (2)

2C ! A (3)

Then according to the reaction rate equations, we have

d[A]

dt
= �k1[A][B]� k2[A] + k3[C] ([C]� 1)

d[B]

dt
= �k1[A][B]

d[C]

dt
= k1[A][B] + 2k2[A]� 2k3[C] ([C]� 1)

We would like to choose reaction rate coe�cients to match the first and
second moments of the stochastic model at the sampled X(t). The
moments are nonlinear in molecular concentrations, but linear in
reaction rate coe�cients.
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We represent chemical reaction networks as a linear

system in the set of reactions
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A similar expression linear in the vector of ki’s can be obtained for
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We represent model reduction of chemical reaction

networks as a linear system subject to L1 regularization
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Then after scaling the system by k from the MLE, we have the
nonnegative LASSO (least absolute selection and shrinkage operator):

min

c
kAc� bk2

s.t.kck1  �, c � 0
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