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Outline

1. Pipeline for nanoparticle optimization based on Small-Angle X-ray 
Scattering (SAXS) data (Anthony/Lenson) 

- Automatic analysis of SAXS data  
- Bayesian optimization of reaction conditions  

2. Automatic analysis of powder diffraction / Wide-angle X-ray scattering 
(WAXS) data 

- Lattice parameter estimation using CNNs  
- Effects of experimental non-idealities on predictions   
- Approaches for tackling multiphase data
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Introduction

Project Goals  

1) Synthesize libraries of monodisperse Pd nanoparticles with user 
specified sizes 

2) Determine synthetic conditions for desired nanoparticle sizes 

3) Perform these experiments in an autonomous fashion using a 
flow-reactor setup  

TEM of Pd NPs with different sizes

Choose: 
 {Temperature, Flow Rate, 
Reagent Concentrations}

Measure physical properties 
via X-ray experiments: 

 {NP size, polydispersity}

Bayesian Optimization

Automatic Synthesis Schematic 

Fong, A et al. Utilization of machine learning to accelerate colloidal synthesis and discovery (in review). 
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Matching the Probe to the Metric
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Small Angle X-ray Scattering (SAXS) characterizes

Shape Size Polydispersity

Wide-angle X-ray scattering (WAXS) characterizes

• Phase 
• Composition 
• Degree of Crystallinity 
• Strain 
• Crystallite Size



Data Fitting Approach 
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Automated Fitting of SAXS data 

SAXS data populations  

-- Dilute spherical NPs (desired) 
-- Condensed / disordered  
-- Superlattice  
-- Precursor (metal ligand)
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Using ML to improve SAXS Fitting
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Bayesian Optimization to find synthesis conditions  
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Bayesian Optimization to find synthesis conditions  
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Details of Bayesian Optimization
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o Size 
o Monodispersity 
o Large Yield  
o Desired Population (dilute)
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Acquisition Function Details 

Constraints Coded into Acquisition Functions

target

Closest training example
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Automating Understanding of Synthesizability

We don’t want to synthesize a single catalyst, we want to synthesize a library

Iteration 1 Iteration 2 Iteration 3 
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Sample Results for NP synthesis
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Future Directions: Binary and Ternary Systems 

Wide-angle X-ray scattering (WAXS) characterizes

• Phase 
• Composition 
• Degree of Crystallinity 
• Strain 
• Crystallite Size

o Multimodal SAXS/WAXS experiments 

• Optimize for desired phase, composition and 
particle size  

• E.g. make NPs of Pt4Sn alloy  

o Automate analysis of 1D powder/WAXS data using ML 

• Crystal System / Lattice parameters  
• Predict phases in data based on known priors 
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Introduction to WAXS / Powder Diffraction 

➢ Peak locations: crystal system / lattice 
parameters  

➢ Peak intensities: space group / position 
of atoms, texturing  

q or 2 

In
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ity

➢ Peak shape: sample / instrument 
effects 

➢ Phase Identification: fingerprinting



Conventional Analysis Pipeline

Peak 
Finding Indexing Refinement

Bottleneck

Overlapping PeaksMultiple Phases 
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Problem Formulation 

q or 2 
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Potential Advantages

Goal: Develop machine learning models to directly estimate lattice 
parameters from powder diffraction data

Robust to Noise

No Intervention Needed  

Fast
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Previous Work

➢ 1Automatic space group and crystal 
system prediction 

➢ 2Lattice parameter prediction for neutron 
diffraction data

1. Park, W. B. et al., IUCrJ (2017). 
2. Doucet, M. et al., Machine Learning: Science and Technology 2.2 (2020).



Previous ML Analysis of Powder Diffraction Data 

• Determination of Space Group and Crystal System 
directly from diffractogram 

- 230 Space Groups, 7 Crystal Systems

  Method Accuracy Type Output Dataset Size Datasets

Park et al. 
2017

CNN 81.14%  
 

Sim 230 space 
groups

150000 ICSD

Oviedo et 
al. 2018

CNN + 
physics 

augmentation

89% Sim/Exp 7 Crystal 
Systems

164 + 115 ICSD/Exp

Vecsei et 
al. 2018 

FCNN 57% Sim/Exp 230 space 
groups

128404 + 800 ICSD/RRUFF

Suzuki et 
al. 2018 

RF - 10 peak 
positions

83.62% Sim 230 space 
groups

188607 ICSD



Simulation Details 

➢ ~ 1 million patterns simulated from CIF structure files from Inorganic 
Crystal Structure Database and Cambridge Structural Database 
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Ibuprofen NaCl 

~ Large Unit Cells 
~ Low symmetry 

~ Small Unit Cells 
~ High symmetry 

Cambridge Structural Database Inorganic Crystal Structure Database



Simulation Details 

!19

19

2

In
te

ns
ity

Crystal Structure  
Factor

Lorentz-Polarization  
Multiplicity
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Performance of Baseline Models on Simulated Data

Crystal System Independent Parameters Mean Percentage Error (%)
Cubic 7.4
Hexagonal 6.4
Trigonal 14.8
Tetragonal 11.6

Orthorhombic 10.0
Monoclinic 11.8
Triclinic , 3.1

ML Models: 1D Convolutional Neural Networks trained and tested on 
simulated intensity arrays for each crystal system

Are these predictions good enough? 



Machine Learning + Refinement Pipeline

1. Coelho, A. A., Journal of Applied Crystallography (2017). !21

ML can provide the initial guess required for refinement 

Machine 
Learning

Estimate 
}

1Lp-Search 
Refinement

Refined 
}

Crystal System 
Knowledge 



Monte Carlo Pawley Refinement (Lp Search)

Lp Search is a Monte Carlo minimization of the objective: 
• Not used so much due to large parameter range 
• Lattice parameter ranges for {} 

- 3 <  
-  < 120 

• Space Group 

Pawley Refinement 
• Minimize difference between calculated and observed (experiment) diffractogram 
• Method does not rely on the structure factor  

Parameters Interpretation

Lattice Parameters Dictates peaks via Bragg Equation

I(hkl)   Intensities for each (hkl)

2θzero  Zero-offset (instrument)

U,V,W   Peak-width 

η Other detector, peak shape parameters 



Automatic Unit-Cell Refinement

Chemical Formula: 1C48H62Er N7O2Si2               Crystal System: Hexagonal 

Lattice Parameters: {a = 13.11, b = 13.11, c = 57.64,  = 120} 

Peaks for c lattice parameter

{a = 13.71, b = 13.71, c = 57.74} 

✓ {a = 13.11, b = 13.11, c = 57.64} 

After Refinement 

CNN Estimate

Possible to fully automate the analysis of challenging powder diffraction patterns 

!231. Huang, Z. et al., Inorganic chemistry (2018).
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• There is normally exists a generalization gap between training on simulated data 
and predicting on experimental data 

Modelling Realistic Non-idealities

• Experimental data has extra non-idealities that may need to modelled  
➢ Peak Intensity Variation 
➢ Zero-Offset Error   
➢ Peak Broadening  
➢ Impurity Phases  
➢ Baseline Noise 

Train on Simulated / Test on Simulated Train on Simulated / Test on Experimental
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Intensity Variation

Modelling Realistic Non-idealities

Non-ideality models preferential orientation effects 
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Zero-Offset Error

Modelling Realistic Non-idealities

Non-ideality models detector drift
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Impurity Phases

Modelling Realistic Non-idealities

Non-ideality models the addition of extra impurity phases
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Baseline Noise

Modelling Realistic Non-idealities

Non-ideality models various sources of baseline noise
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Peak Broadening

Modelling Realistic Non-idealities

Non-ideality models broadening due to size and microstrain effects



Effect of Realistic Non-idealities

Baseline CNN models are unstable against some non-ideal conditions
!30



Stabilization against Realistic Non-idealities
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Using non-idealities during training greatly improves performance 
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Multiphase analysis: Predicting phases and phase fractions 

Phase identification/fraction using CNNs  

Prior knowledge 
of possible phases 



Future Work 
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❖ Nanoparticle Optimization 
o Other systems beyond Pd 
o Extension to multicomponent systems using SAXS/WAXS  
o Analysis of other optimization methods beyond Bayesian optimization  

❖ Powder Diffraction Anaysis  
o Incorporation of more realistic physical models for preferred orientation, 

microstrain, crystallite size and temperature dependence  
o Adding atomic / geometrical features based on plausible compositions  
o Capturing additional information in the 2D area data 
o Using prior information to analyze multiphase data  
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Supplementary Slides
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Learning Nanoparticle Design Rules

• TOP, oleylamine, oleic acid are ligands which can bind and control nucleation and growth 
- TOP slows nucleation kinetics by increasing Pd precursor  
- Oleylamine can enhance nucleation kinetics  
- ODE is just a diluting solvent 

• Higher Temperatures + Lower Flow Rates give bigger NPs 
- Large T  accelerates growth kinetics  
- Low Flow-rate increase growth duration  

 


