Autonomous analysis of synchrotron X-ray experiments with applications to metal nanoparticle synthesis

Anthony Fong, Lenson Pellouchoud, **Sathya Chitturi**, Christopher Tassone Stanford University & Stanford Synchrotron Radiation Lightsource

- Pipeline for nanoparticle optimization based on Small-Angle X-ray Scattering (SAXS) data (<u>Anthony/Lenson</u>)
 - Automatic analysis of SAXS data
 - Bayesian optimization of reaction conditions
- Automatic analysis of powder diffraction / Wide-angle X-ray scattering (WAXS) data
 - Lattice parameter estimation using CNNs
 - Effects of experimental non-idealities on predictions
 - Approaches for tackling multiphase data

SLAC

Project Goals

- 1) Synthesize libraries of monodisperse Pd nanoparticles with user specified sizes
- 2) Determine synthetic conditions for desired nanoparticle sizes
- 3) Perform these experiments in an autonomous fashion using a flow-reactor setup

TEM of Pd NPs with different sizes

Automatic Synthesis Schematic

Fong, A et al. Utilization of machine learning to accelerate colloidal synthesis and discovery (in review).

Matching the Probe to the Metric

4

Automated Fitting of SAXS data

SLAC

D

SAXS data populations

- -- Dilute spherical NPs (desired)
- -- Condensed / disordered
- -- Superlattice
- -- Precursor (metal ligand)

ata Fitting Approach

$$I_{s}(q) = I_{noise} = I_{noise}$$

$$+ I_{pre}(q) + I_{0,pre} * \overline{\langle f_{G-P}^{2} \rangle}[r_{g,pre}, D_{pre}](q)$$

$$+ I_{dni}(q) + I_{0,dni} * \overline{\langle f_{Sph}^{2} \rangle}[\bar{r}_{dni}, \sigma_{dni}](q)$$

$$+ I_{cand}(q) + I_{0,cond} * \overline{S}_{hs}[r_{h,cond}, \phi_{cond}](q) * \overline{\langle f_{sph}^{2} \rangle}[\bar{r}_{cend}, \sigma_{cord}](q)$$

$$c(s) = \frac{1}{\Omega_{q}} \int_{q} dq \left[\frac{1}{\sigma_{I}(q)^{2}} \left[\log(I_{mous}(q)) - \log(I_{s}(q)) \right]^{2} \right]$$

$$s^{*} = \operatorname{argmin} c(s)$$

Using ML to improve SAXS Fitting

SLAC

Code: xrsdkit

https://github.com/scattering-central/xrsdkit

Bayesian Optimization to find synthesis conditions

Bayesian Optimization to find synthesis conditions

Details of Bayesian Optimization

 $p_{
m dil}$

 $\sigma_{
m dil}$

 $\mathbf{y} =$

1. Presence of dilute nanoparticle products (binary): $p_{dil} \in \{-1, 1\}$ $p_{\rm cond}$ 2. Presence of condensed (disordered) nanoparticle products: $p_{\text{cond}} \in \{-1, 1\}$ $p_{ m cryst} \ I_0 \ ilde{I}_{0,{ m dil}} \ ilde{r}_{{ m dil}}$ 3. Presence of crystalline (superlattice) nanoparticle products: $p_{\rm cryst} \in \{-1,1\}$ 4. Intensity at q = 0: I_0 , in $[0, \infty)$ 5. Fraction of I_0 attributable to dilute nanoparticle products: $\tilde{I}_{0,\text{dil}} = I_{0,\text{dil}}/I_0$, in [0, 1] 6. Mean radius of dilute nanoparticle products: $\bar{r}_{\rm dil}$, in $(0, \infty)$ 7. Fractional standard deviation of radii of dilute nanoparticle products: $\sigma_{\rm dil}$, in $(0,\infty)$

$$g(\bar{y}, \sigma_y^2) = \prod_j [g_j(\bar{y}_j, \sigma_{yj}^2)]$$
$$x^* = \underset{(x)}{\operatorname{argmax}} g(\bar{y}, \sigma_y^2)$$

Treac

 F_{tot}

 $x = \begin{vmatrix} x_{ODE} \\ x_{TOP} \end{vmatrix}$

$$g_j(\overline{y}_j, \sigma_{yj}^2) = P(|y_j - y_j^*| < |y_j^+ - y_j^*|)$$

9

Acquisition Function Details

Constraints Coded into Acquisition Functions

$$\begin{split} g_{0}(\bar{p}_{\rm dil},\sigma_{p\rm dil}^{2}) =& P(p_{\rm dil}>0) \\ g_{1}(\bar{p}_{\rm cond},\sigma_{p\rm cond}^{2}) =& P(p_{\rm cond}<0) \\ g_{2}(\bar{p}_{\rm cryst},\sigma_{p\rm cryst}^{2}) =& P(p_{\rm cryst}<0) \\ g_{3}(\bar{I}_{0},\sigma_{I0}^{2}) =& P(I_{0}>10) \\ g_{4}(\bar{\tilde{I}}_{\rm dil},\sigma_{\tilde{I}\rm dil}^{2}) =& P(\tilde{I}_{\rm dil}>0.9) \\ g_{5}(\bar{r}_{\rm dil},\sigma_{\bar{r}\rm dil}^{2}) =& P(|\bar{r}_{\rm dil}-\bar{r}_{\rm dil}^{*}| < |\bar{r}_{\rm dil}^{+}-\bar{r}_{\rm dil}^{*}|) \\ g_{6}(\bar{\sigma}_{\rm dil},\sigma_{\sigma\rm dil}^{2}) =& P(\sigma_{\rm dil}<0.2) \end{split}$$

Automating Understanding of Synthesizability

SLAC

We don't want to synthesize a single catalyst, we want to synthesize a library

Sample Results for NP synthesis

Future Directions: Binary and Ternary Systems

SLAC

• Multimodal SAXS/WAXS experiments

- Optimize for desired phase, composition and particle size
- E.g. make NPs of Pt4Sn alloy

- Automate analysis of 1D powder/WAXS data using ML
 - Crystal System / Lattice parameters
 - Predict phases in data based on known priors

Introduction to WAXS / Powder Diffraction

kin 20 Republic to the second second

- Peak locations: crystal system / lattice parameters
- Peak intensities: space group / position > Phase Identification: fingerprinting of atoms, texturing
- Peak shape: sample / instrument effects

Conventional Analysis Pipeline

Problem Formulation

-SLAC

Goal: Develop machine learning models to directly estimate lattice parameters from powder diffraction data

1. Park, W. B. et al., IUCrJ (2017).

2. Doucet, M. et al., Machine Learning: Science and Technology 2.2 (2020).

Previous ML Analysis of Powder Diffraction Data

- Determination of Space Group and Crystal System
 directly from diffractogram
 - 230 Space Groups, 7 Crystal Systems

	Method	Accuracy	Туре	Output	Dataset Size	Datasets
Park et al. 2017	CNN	81.14%	Sim	230 space groups	150000	ICSD
Oviedo et al. 2018	CNN + physics augmentation	89%	Sim/Exp	7 Crystal Systems	164 + 115	ICSD/Exp
Vecsei et al. 2018	FCNN	57%	Sim/Exp	230 space groups	128404 + 800	ICSD/RRUFF
Suzuki et al. 2018	RF - 10 peak positions	83.62%	Sim	230 space groups	188607	ICSD

Simulation Details

~ 1 million patterns simulated from CIF structure files from Inorganic Crystal Structure Database and Cambridge Structural Database

Inorganic Crystal Structure Database

- ~ Large Unit Cells
- ~ Low symmetry

- ~ Small Unit Cells
- ~ High symmetry

Simulation Details

 $\left(1+\cos^22 heta
ight)$ $I=lpha(m_{hkl})\Big(|F_{hkl}|^2\Big)$ $(\sin\theta\sin2\theta)$ Lorentz-Polarization Multiplicity Crystal Structure Factor Intensity 2 $\lambda = 2 d_{hkl} \sin heta$

SLAC

ML Models: 1D Convolutional Neural Networks trained and tested on simulated intensity arrays for each crystal system

Crystal System	Independent Parameters	Mean	Percentage Error (%)
Cubic		7.4	
Hexagonal		6.4	
Trigonal		14.8	
Tetragonal		11.6	
Orthorhombic		10.0	
Monoclinic		11.8	
Triclinic	3	3.1	
		$\mathbf{\nabla}$	

Are these predictions good enough?

Machine Learning + Refinement Pipeline

ML can provide the **initial guess** required for refinement

Monte Carlo Pawley Refinement (Lp Search)

Pawley Refinement

- Minimize difference between calculated and observed (experiment) diffractogram
- Method does <u>not</u> rely on the structure factor

$M = \sum_{i} W_{i} \left\{ y_{i}^{obs} - \frac{1}{c} y_{i}^{calc} \right\}$	$\left.\right\}^{2}$
--	----------------------

Parameters	Interpretation		
Lattice Parameters	Dictates peaks via Bragg Equation		
I(hkl)	Intensities for each (hkl)		
$2\theta_{zero}$	Zero-offset (instrument)		
U,V,W	Peak-width		
η	Other detector, peak shape parameters		

Lp Search is a Monte Carlo minimization of the objective:

- Not used so much due to large parameter range
- Lattice parameter ranges for {}
 - 3 <
 - < 120
- Space Group

Automatic Unit-Cell Refinement

SLAC

Chemical Formula: ${}^{1}C_{48}H_{62}Er N_7O_2Si_2$ Crystal System: HexagonalLattice Parameters: {a = 13.11, b = 13.11, c = 57.64, = 120}

Possible to **fully automate** the analysis of challenging powder diffraction patterns

^{1.} Huang, Z. et al., Inorganic chemistry (2018).

There is normally exists a generalization gap between training on simulated data
 and predicting on experimental data

Train on Simulated / Test on Simulated Train on Simulated / Test on Experimental

- Experimental data has extra non-idealities that may need to modelled
 - > Peak Intensity Variation
 - Zero-Offset Error
 - > Peak Broadening
 - > Impurity Phases
 - Baseline Noise

Intensity Variation

Non-ideality models preferential orientation effects

Zero-Offset Error

Non-ideality models detector drift

Non-ideality models the addition of extra impurity phases

Non-ideality models various sources of baseline noise

Non-ideality models broadening due to size and microstrain effects

Effect of Realistic Non-idealities

-SLAC

Baseline CNN models are **unstable** against some non-ideal conditions

Stabilization against Realistic Non-idealities

Multiphase analysis: Predicting phases and phase fractions

Phase identification/fraction using CNNs

Future Work

Nanoparticle Optimization

- Other systems beyond Pd
- $\circ~$ Extension to multicomponent systems using SAXS/WAXS
- \circ Analysis of other optimization methods beyond Bayesian optimization

Powder Diffraction Anaysis

- Incorporation of more realistic physical models for preferred orientation, microstrain, crystallite size and temperature dependence
- Adding atomic / geometrical features based on plausible compositions
- \circ Capturing additional information in the 2D area data
- Using prior information to analyze multiphase data

SLAC

Lenson Pellouchoud **Anthony Fong** Malcolm Davidson Carena Church **Ekaterina** Tcareva Liheng Wu Kyle Peterson

Bryce Meredig

Kevin Stone Daniel Ratner Richard Walroth Vivek Thampy Evan Reed Mike Dunne Chris Tassone

ADVANCED MANUFACTURING OFFICE

Supplementary Slides

Learning Nanoparticle Design Rules

- TOP, oleylamine, oleic acid are ligands which can bind and control nucleation and growth
 - TOP slows nucleation kinetics by increasing Pd precursor
 - Oleylamine can enhance nucleation kinetics
 - ODE is just a diluting solvent
- Higher Temperatures + Lower Flow Rates give bigger NPs
 - Large T accelerates growth kinetics
 - Low Flow-rate increase growth duration

SI AO