
Signal Decomposition via Distributed Optimization

Bennet Meyers and Stephen Boyd

Stanford University

SLAC AI Seminar, Menlo Park, April 23, 2021

Outline

Signal decomposition problem

Parameters and validation

Distributed solution method

PV data example

2

Signals

I we consider vector valued signals that can include missing values

y1, . . . , yT ∈ (R ∪ {?})p, y =
[
y1 · · · yT

]
I partition indices into known and unknown values

K = {(t, i) | yt,i ∈ R}, U = {(t, i) | yt,i =?}

I examples: financial data, energy production/load data, atmospheric and
hydrospheric data

3

Example: data from 8 PV systems

time axis (minutes)

1
2
3
4
5
6
7
8P

V
sy

st
em

n
u

m
b

er

0.0

0.2

0.4

0.6

kW

I 5 days of 1-minute measurements from 8 PV systems in the same geographic area

I white pixels denote missing values

4

Decomposing a signal into components

I decomposition of signal y into K components

y
K
= x1 + · · ·+ xK

I
K
= means equal at known indexes t, i ∈ K

I xk ∈ RT×p for k = 1, . . . ,K are components with no missing data

I component xk comes from component class k
I example component classes

– smooth
– sparse
– periodic
– nonnegative
– piecewise affine
– Boolean with infrequent switching

5

Brief comment on notation

I drop the k when refering to a general variable x ∈ RT×p

I xt ∈ Rp for t = 1, . . . ,T is a row vector

I xi ∈ RT for i = 1, . . . , p is a column vector

I xt,i ∈ R is a single entry

6

Estimating missing values

I missing values in y can be estimated from decomposition as

ŷ
U
= x1 + · · ·+ xK

I basis of validation and parameter tuning method described later on

7

Component classes

I component classes characterized by loss or implausibility functions

φk : RT×p → R ∪ {∞}, k = 1, . . . ,K

I smaller φk(x) means more plausible x for class k

I infinite values encode constraints on components

I for statistical model of a component class, φ(x) is negative log-likelihood

I simple examples (with scale factor λ > 0):

– mean-square small class: φ(x) = λ
Tp

∑
t ‖xt‖22

– mean-square smooth class: φ(x) = λ
(T−1)p

∑T−1
t=1 ‖xt+1 − xt‖22

– nonnegative class: φ(x) =

{
0 xt,i ≥ 0 for all t, i
∞ otherwise

8

Signal decomposition problem

I we choose decomposition to minimize total loss or implausibility

I signal decomposition (SD) problem:

minimize φ1(x1) + · · ·+ φK (xK)

subject to y
K
= x1 + · · ·+ xK

I variables are components x1, . . . , xK

I we refer to a solution as an optimal signal decomposition

9

Solving the signal decomposition problem

I if all φk are convex, SD problem is convex, and so can be efficiently solved

I otherwise, we settle for an approximate solution

I our method is based on alternating directions method of multipliers (ADMM)

– a distributed method that handles the component classes separately
– easy to define new component classes
– solves SD problem when it’s convex
– approximately solves SD problem it’s not convex

10

Example

K = 3 component classes:

I mean-square small, φ1(x) = λ1
Tp

∑
t ‖xt‖22

I mean-square smooth, φ(x) = λ2
(T−1)p

∑T−1
t=1 ‖xt+1 − xt‖22

I Boolean with infrequent switching,

φ(x) =

{
λ3

(T−1)p
∑

i

∑T−1
t=1 |xt+1,i − xt,i | xt,i ∈ {0, 1} for all t, i

∞ otherwise

i.e., rate of switching between values 0 and 1

I λi are positive weights; can take λ1 = 1

11

Synthetic data

I scalar signal, i.e., y ∈ (R ∪ {∞})1×T

I generate y as x1true + x2true + x3true, then randomly make 10% of entries unknown

I entries of x1true are IID N (0, 0.152)

I entries of x2true are white noise passed through a low-pass filter

I x3true is realization of Markov chain on {0, 1} with probability 0.1 of transitions
0→ 1 or 1→ 0

12

Synthetic data

−0.25
0.00
0.25

component 1

−1

0

1

component 2

0

1
component 3

0 25 50 75 100 125 150 175 200
−2

0

2
signal, y

missing data

13

Decomposition with λ2 = 25, λ3 = 0.5

−0.25
0.00
0.25

component 1
true

estimate

−1

0

component 2
true

estimate

0

1
component 3

true

estimate

0 25 50 75 100 125 150 175 200

0

2
composed signal

observed

missing

true

estimate

14

Decomposition with λ2 = 500, λ3 = 5

0

1
component 1

true

estimate

−1

0

component 2
true

estimate

0

1
component 3

true

estimate

0 25 50 75 100 125 150 175 200

0

2
composed signal

observed

missing

true

estimate

15

Outline

Signal decomposition problem

Parameters and validation

Distributed solution method

PV data example

16

Component class parameters

I class losses φk can have associated parameters, denoted φk(xk ; θk), θk ∈ Θk

I some common examples

– weight or scaling parameters φ(x ; θ) = θ`(x), θ ∈ Θ = R++

(often denoted with traditional symbol λ)

– signal scaling parameters φ(x ; θ) = φbool(x/θ) =⇒ x ∈ {0, θ}T×p

– constraint parameters φ(x ; θ) = I(θ1 ≤ x ≤ θ2)

– basis parameters φ(x) = I(x = θα for some α ∈ Rd×n)

I different parameters lead to different decompositions

17

Validating a decomposition

I randomly select test set T ⊂ K and replace associated values in y with ?

I carry out decomposition using entries K \ T
I decomposition yields estimates ŷt,i for (t, i) ∈ T
I quantify residuals or errors yt,i − ŷt,i , (t, i) ∈ T , with some metric,

e.g. RMS or AA (average absolute)

I for more stable validation, process can repeat, e.g. k-fold cross validation or
bootstrap sampling

I can be used to choose component classes and class parameters

18

Example

I set λ1 = 1, search
parameter space for
best λ2 and λ3

I randomly select 10%
of the data point for
test set

I decompose for each
parameter value
(10× 10 grid)

I repeat 12 times and
take average error

100 101 102

λ2

10−1

100

101

λ
3

AA test error

min error

best value within 2%

0.25

0.30

0.35

0.40

0.45

19

Final decomposition, λ2 = 21.5, λ3 = 0.278

−0.25
0.00
0.25

component 1

true

estimate

−1

0

component 2

true

estimate

0

1
component 3

true

estimate

0 25 50 75 100 125 150 175 200

0

2
composed signal

observed

true

estimate

20

Outline

Signal decomposition problem

Parameters and validation

Distributed solution method

PV data example

21

Alternating direction direction of multipliers (ADMM)

I a method for solving convex optimization problems

I developed in 1970s, with roots in 1950s; modern treatment in Boyd et al. [2011]

I can be used as a heuristic for non-convex problems

I a distributed method, with different parts handled separately

22

SD via ADMM

I for iteration j = 1, . . .

(xk)j+1 := proxk

(
(xk)j − uj

)
, k = 1, . . . ,K

ŷ j+1 :=
K∑

k=1

(xk)j+1

uj+1
t,i := ujt,i +

2

K
(ŷ j+1

t,i − yt,i), (t, i) ∈ K

I proxk(v) = argminx

(
φk(x) + ρ

2‖x − v‖2F
)
, proximal operator of φk

I ρ > 0 is an algorithm parameter

I ujt,i are dual variables

23

Convergence and properties

I converges to (global) solution when all φk are convex, for any ρ > 0

I is a good heuristic in other cases, but choice of ρ can matter

I only need proximal operator for each component class

I first step can be carried out in parallel, for the k components

I each component handled separately; coordination is via dual variables ujt,i

24

Proximal operator

proxφ(v) = argmin
x

(
φ(x) +

ρ

2
‖x − v‖2F

)
I compromise between making φ(x) small and x near v

I when φ is an indicator function of a set C, proximal operator is projection onto C
(and doesn’t depend on ρ)

I for many φ, proximal operator can be worked out analytically

I for others, can involve some computation

25

Examples

name φ(x) proxφ(v)

mean-square small λ
∑

t ‖xt‖22
ρ

2λ+ρvt,i

average-absolute small λ
∑

t ‖xt‖1


vt,i − λ/ρ vt,i > λ/ρ

0 |vt,i | < λ/ρ

vt,i + λ/ρ vt,i < −λ/ρ

mean-square small rth-order diff. λ
∑

i ‖Drxi‖22
(
I + 2λ

ρ D
T
r Dr

)−1
v

non-negative I(x ≥ 0) (v)+

linear equality constraint I(Ax = b) v − AT (AAT)−1(Av − b)

Boolean set I(x ∈ {0, 1}T×p)

{
0 |vt,i | ≤ |vt,i − 1|
1 otherwise

26

A less obvious example

I Boolean with infrequent switching

φ(x) =

{
λ
∑

i

∑T−1
t=1 |xt+1,i − xt,i | xt,i ∈ {0, 1} for all t, i

∞ otherwise

I proximal operator can be evaluated by solving a graph shortest path problem
using dynamic programming, with cost O(T) flops

27

Convergence example, convex case

0 20 40 60 80 100

iteration

10

20

30

40

50

60

o
b

j
va

l

min obj val

28

Convergence example, non-convex case

0 20 40 60 80 100

iteration

25

50

75

100

125

150

175

o
b

j
va

l

min obj val

29

Outline

Signal decomposition problem

Parameters and validation

Distributed solution method

PV data example

30

PV fleet outage detection

I recall data example of power signals from 8 PV systems (PV ‘fleet’) exposed to
similar weather patterns

I want to automatically detect drops in system output that might be due to a
failure of a PV module or string of modules

I standard industry approach

– make a physical model of each system
– obtain local measurements of irradiance and temperature
– compare actual to predicted for each system

I let’s try a purely data driven approach, using SD

31

The data set

I 15 days of 1-minute
measurements from 9 systems

I T=21600, p=9
I artificially induce ‘failures’ in two

systems

– 25% loss of power output in
system 6 during second-to-last
day

– 50% loss of power output in
system 1 during final day

1

fleet power data

2
3

4
5

6
7

8

time [minutes]

9
32

Data preprocessing

I scale each system data to about [0, 1] (use 95th percentile for UB, not max)

I take log10 and set zero values to ?

I taking log gives a multiplicative component model, instead of additive

33

SD components

I residual: φ1(x) = λ1‖x‖2F
I common clear sky component: smooth, equal across systems, daily periodic

– φ2(x) = λ2
∑T−2

t=1 ‖xt − 2xt+1 + xt+2‖22
– xi − xi+1 = 0, for i = 1, . . . , p − 1
– xt − xt+1440 = 0, for t = 1, . . . ,T − 1440

I common weather component: asymmetric distribution and equal across systems

– φ3(x) = λ3
∑

t,i 1/2 |xt,i |+ (τ − 1/2)xt,i
– xt,i − xt,i+1 = 0, for all t and for i = 1, . . . , p − 1

I outage detector: non-positive, mostly zero, and mostly constant

– φ4(x) = λ4
∑

i

∑T−1
t=1 |xt,i − xt+1,i |+ λ5

∑
t,i (−xt,i)

– x � 0
– x1 = 0 (first row is the zero vector)

I T × p × K = 777, 636 variables to estimate!

34

Results: decomposition of system 1 (last 5 days)

−2.5

0.0
data

log power space

0

1

power space

−0.5

0.0comp 1
0.5
1.0
1.5

−2.5

0.0
comp 2

0

1

−1

0
comp 3

0

1

0 2000 4000 6000

−0.2

0.0
comp 4

0 2000 4000 6000

0.75

1.00

35

Results, outage detector component

time axis (minutes)

1

2

3

4

5

6

7

8

9

P
V

sy
st

em
n

u
m

b
er

Fleet loss analysis

0.6

0.7

0.8

0.9

1.0

lo
ss

fa
ct

or
(u

n
it

le
ss

)

36

Naive approach, compare each to average

time axis (minutes)

1

2

3

4

5

6

7

8

9

P
V

sy
st

em
n

u
m

b
er

Fleet loss analysis

0.4

0.6

0.8

1.0

1.2

lo
ss

fa
ct

or
(u

n
it

le
ss

)

37

Software

I developing Python implementation:
https://github.com/bmeyers/optimal-signal-demixing/

I work in progress

I components defined as objects, proximal operators are attributes

I no requirement to understand ADMM or proximal operators to use!

38

https://github.com/bmeyers/optimal-signal-demixing/

Conclusions

signal decomposition via distributed optimization

I is interpretable

I provides a good way to describe prior knowledge about the signal

I is extensible

I is scalable to very large data sets

I does not require large training sets (or any labeled training data)

This material is based upon work supported by the U.S. Department of

Energy’s Office of Energy Efficiency and Renewable Energy (EERE) under

the Solar Energy Technologies Office Award Number 34368.

39

	Signal decomposition problem
	Parameters and validation
	Distributed solution method
	PV data example

