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Motivation

Efficiency of internal combustion engine

vower in foe @ Why is this so inefficient?
combustion
100% - @ How do Hybrid cars (e.g. a
Woterveating  36% Prius) get higher efficiency?
They still use internal
Exhaust heat 38% . .
Motor friction 6% CombUStlon englneS
Efiectivs pomse @ How would electric drive
20% vehicles compare?
Drive train 2%
t% Fonttres 1% @ How do we make electricity for
Elieoivn powse a vehicle fleet?
’I*";"" @ Need a sort of "Wellhead to
Air resistance 8% . .
—rrre Wheel" efficiency to sort this
o nd seeosores out
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Plug-in Series Hybrid - Chevrolet Volt example

@ Plug-In Hybrid uses both electrical

and petroleum energy sources

@ disadvantage - two drive trains,
weight, complexity

@ 35 -50 mile range as plug-in (9.3 gal
tank, range 380 miles)

@ fast refuel from fuel distribution, slow °
from grid

Conventional modern IC engine
@ Electric motor, regenerative braking

@ Series Hybrid allows either, or, both
drive approach

@ 1.4L 84 HP ( 63 kW)
@ 149 HP (111kW) electric motor

@ 16 kWh battery capacity ( 435 Ibs,
200kg)

@ EPA 98MPG equiv 35/40 MPG
@ (3781 Ibs curb weight)




Estimates for PHEV Market Share

On the Road toward 2050:

Potential for Substantial Reductions
in Light-Duty Vehicle Energy Use

—— e
M and Greenhouse Gas Emissions

Report
Massachusetts Institute
of Technology
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November 2015

New Vehicle Market Share

@ s there going to be an impact
from PHEV vehicles?
@ What fraction of the US fleet? rcHey
@ MIT Sloan Study suggests PHEV e
market roughly equal to BEV W ey
market 40% [ - o = Diesel
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Figure 9.4 Powertrain market share input values 2010-2050.



Context Sensitive Hybrid Battery Management

@ Seed Grant, Precourt Institute for Energy Efficiency, Stanford
@ Original proposal - two research tracks

e Task 1 - Investigation of Route Estimator methods
e Task 2 - Vehicle Resource management techniques, based on
route knowledge

@ Research directed at improving grid-sourced energy use in plug-in
hybrids, minimizing fuel use

v




Context Sensitive Hybrid Battery Management

Plug-In hybrid should maximally transfer energy from Grid, minimally use fuel resources

Battery State-Of-Charge ( SOC) - needs headroom to accept regenerative braking,
downhill energy recovery

SOC minimum to allow acceleration torque, electric efficiency
@ But when do you use each resource?
@ How do you decide to torque split gas vs. electric drive?
@ Do you ever recharge the battery from the petroleum?
@ Can you plan resources to end a trip with low SOC?

Can you use knowledge of the trip energy profile (context) to optimally manage battery and
fuel resources?
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Teaser

Optimal beats CDCS Conventional by 10% to 20%
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@ Compare Context-Sensitive Optimal Controller vs. Conventional
(CDCS) controller fuel use

@ Energy-equal routes, with energy profile differences
@ |Is this always true? How can we study this?



Progress

Research Directions

@ Literature Review
e Previous Work in route estimation from Nissan USA, Microsoft
Research
e Limited publications on optimal control using route information -
recent Argonne paper, Larsson Chalmers University Ph.D. Thesis
@ First decision - focus on optimal management with known route
@ Best match to graduate student interests
@ Defer Route Estimation for a later year, student with specific interest/expertise
@ First efforts - investigate vehicle simulation tools and options to

quantify energy on a determined route
@ Selection of Autonomie simulation tools for initial studies
@ Investigate battery technology for vehicles , understand series and parallel hybrid

vehicle technologies
@ Investigate optimal control methods for hybrid engine vs battery tradeoffs, state of

charge resource utilization




Autonomie Vehicle Simulator

We build our simulation models, vehicle technology around the
Autonomie matlab/simulink framework

Developed at Argonne National Lab

Allows quantitative studies of vehicle performance on specified route

Outputs of primary system parameters

Allows study of various controllers, studies of various vehicle technology choices

Has significant amount of measured vehicle database, models of selected power plants
Battery models including temperature effects

Charge Depleting (CD) Charge Sustaining
0.9 k=== =T = s s s s e e e ===
0.8
0.7
» 06
=}
@ 05
04 :
03 et
0.2
0.1
0 10 20 30 a0 50

Distance

Figure 9 — Control strategy SOC behavior.

Figure 6 — Transmission model of the GM Voltec.



Parallel Plug-In Hybrid Vehicle Model

A Znergy Monitor

@ Similar to Toyota Prius plug-in, but bigger battery capacity
@ uses Automie hybrid controller models
@ includes parasitic losses, battery losses, thermal models

@ Autonomie IC engine
maps (Honda Insight)

@ Electric motors,
regenerative braking

@ Hybrid transmission
(planetary gear)
allows either, or, both
drive approach

@ Gas Engine 95 kW

@ Electric motor 1 55
kW, motor 2 66 kW

@ Battery capacity 7
kWh ( 4.4kWh Toyota)




Progress

Thottled Engines, Specific Fuel Efficiency vs Torque,
Power and RPM

Basic Engine Operating Line

Basic operating | i | !

Efficiency Curve
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@ Throttled engines - are most efficient at wide open throttle

@ Efficiency vs. RPM a function of valve timing, induction effects

@ But can you use all the power? Use Battery Resources to store fuel-derived energy

@ Need Active Battery management -impacts from charge/discharge rates, heating, lifetime



Progress

compare two drive cycles, with equal-energy demand

@ We can evaluate various controllers, on two energy-equal routes
@ This lets us quantify possible impacts of resource optimization
@ Conventional Controller (CDCS)- use battery first, when SOC is 30%, become a hybrid
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CDCS Controller - Route Engine Power, Torques

Engine power (%)

Engine power(%)

@ Urban component - 5 NYC taxi cycles ( lots of stop and go)
@ Suburban ( cruise) component - steady state cruise ( no stop and go)

@ Conventional CDCS Controller
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@ \Very different torque and power profiles ( Gas engine)
@ Total Energy of the route is the same in both cases



Conventional CDCS Controller Fuel Use

@ Identical total energy demand both routes
@ Any variation in consumption is strictly from resource management
@ Can we do better than this? Fuel use 4.4 to 5.1 x107 J
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@ In this example, scheduling of battery use - roughly 10% difference



Progress

CDCS Controller - Battery usage two routes

@ |dentical energy both routes
@ Battery State of Charge ( SOC) reflects use during trip power,
torque profile
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Motivation Teaser ogress First Optimal Results Battery Initial Conclusions Next Steps

Optimal Control via Convex Optlmlzahon

We find the minimum-fuel control by (integer) convex optimization
Uses a vehicle/route model to predict and optimize energy usage

Considers
@ Gas Engine Specific Fuel vs Power, Torque and RPM
@ Efficiency and constraints of electric motors and engine planetary gearset
@ Battery losses (resistive-capacitive model, losses from internal series resistance)
@ Engine thermal minimum on-time efficiency costs
@ Solved on the fly (<1 sec.)
@ enabled by fast algorithms and modern high throughput processors
@ can incrementally resolve problem with new information
@ Uses Convex Optimzation tools from Stephen Boyd
Many versions possible, e.g.:
@ Minimize combination of: fuel use, battery use, engine cycling, battery stress ...
@ Assume known route, or probabilistic route (i.e., true route is one of several
candidates)

Allows study of various controllers, studies of various vehicle
technology choices (use as a tool to optimize vehicle
characteristics). Optimal solution applied to Autonomie model
vehicle via engine state parameters



Optimal Controller fuel, battery SOC Urban First
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Optimal Controller fuel, battery SOC Urban Last
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First Optimal Results

Optimal Controller comparison, urban first/last
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Can we compare histograms of engine power output, gngine run time,
etc. to better understand how the optimal solution is different from
CDCS?



First Optimal Results

Fuel for two routes, optimal-control vs. CDCS

Med Urban Last

7 Med Urban First 7
[y — - . : - 4510 - - - —
sk r,f/ 1
5 <
yadl ~
350 y — ]
/f S
- e
4r 3F e 1
S ‘JJ
5 _25f = ]
Sat ) [
w w [
2t / i
/
2F 15F / q
[
1 / g
e [
10 e i ,’
— Optimal 05F /
e — Default —— - -w-eel
0 I I L L 0 L L L L L L
0 1000 2000 3000 4000 5000 6000 7000 0 1000 2000 3000 4000 5000 6000 7000
Time (s)

Time (s)
@ convex-optimized hybrid battery controller, energy-equal routes
@ Compare with same routes using Conventional (CSCD) controller
@ in both cases - Optimal beats Conventional by > 10% to 20%

@ Optimal uses same fuel both routes
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Fuel, Battery SOC for two routes, Optimal vs. CDCS
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@ Convex-optimized hybrid battery controller, energy-equal routes
@ Compare with same routes using Conventional (CDCS) controller
@ Both Optimal vs. Conventional Controller SOC end at 30%

@ Both controllers run the engine, but at what torque and RPM?



Fast Cruise, optimal-control vs. Conventional CDCS
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@ convex-optimized hybrid battery controller, energy-equal routes
@ Compare with same routes using Conventional (CDCS) controller
@ in both cases - Optimal beats Conventional by >10%
@ higher cruise speeds pushes engine into higher efficiency range - less to optimize



First Optimal Results

Fuel Comparison for 4 cruise speeds
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@ convex-optimized hybrid battery controller vs. CDCS, energy-equal routes

@ Compared for 4 cruise speeds ( 85, 65, 39, 28 mi/hr ). Fixed 7000 sec cycle

@ in all cases - Optimal beats Conventional by >10% to >20%

@ higher cruise speeds pushes engine into higher efficiency range - less to optimize



Engine On/Off cycles, comparisons

Median Off Time
T T
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CJcocs |
@ convex-optimized hybrid battery controller vs. CDCS, energy-equal routes
@ Compared for 4 cruise speeds (85, 65, 39, 28 mi/hr ) Fixed 7000 sec cycle
@ Possible Impact on economy from engine temp
@ Optimal control cost on engine start



First Optimal Results

Engine Power Histogram Insight
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2000 T T

Optimal med urban last

- T 2000 . . - - T
1500 |- 1 L ]
> ® 1500
2 1000~ 1 @ 1000 ]
= £
L 4 [
0 05 1 1.5 2 25 3 35 4 4.5 0 05 1 15 2 25 3 35 4 45
x10* <10
2000 ‘ (?DCS ""ed urb‘an fnrst‘ i i CDCS med urban last
2000 T T T T T T T T
> 1500 - 1 1500 1
b )
2 1000 1 @ 1000 1
= £
L 4 =
500 500 ]
0 . N . . . o |
0 0.5 1 15 2 25 3 35 4 4.5 0 05 1 15 > 25 3 35 4 45

Engine Power (W) x10% Engine Power (W) x10%

@ convex-optimized hybrid battery controller vs. CDCS, energy-equal routes
@ Medium cruise speed, fixed 7000 sec cycle, urban first (left) last (right)

@ The optimal controller runs the engine at higher power, for shorter intervals
@ higher power - higher specific efficiency (throttled engine)

@ Is there an impact on the battery?



First Optimal Results

Engine Power Histogram Fast Routes
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@ convex-optimized hybrid battery controller vs. CDCS, energy-equal routes

@ fast cruise speed, fixed 7000 sec cycle, urban first (left) last (right)

@ The optimal controller runs the engine at lower average power

@ Still achieves a fuel economy advantage

@ This operating point minimizes combination of battery and fuel efficiency losses



First Optimal Results

Fast Engine Power Histogram, mystery explained
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@ This operating point minimizes combination of battery and fuel efficiency losses
@ Battery losses - from internal resistance and charge/discharge currents

@ Engine losses - efficiency of engine*fuel energy

@ convex-optimized hybrid battery controller vs. CDCS, energy-equal routes

@ fast cruise speed, fixed 7000 sec cycle, urban first (left) last (right)

@ The optimal controller runs the engine at lower average power

@ Still achieves a fuel economy advantage

28



Charge rates, Temperatures impact battery lifetime

107 Charge Limit Impact on Fuel Economy
T T

M Freedom CARgoal Ml Li-ion Battery

“15-year life capable of delivering at Operation
least 55 kW for 18 seconds, 30kW Temperature
continuous at a system cost of Pulse  Self 3t i
$12/kW.” Power Discharge

Efficiency Price 2k
“60% peak energy-efficient, achieves
a 325W/kg and 220 W/L power

density.” Energy

Density s

Specific Power

12kW 8kW 4k 2kW

To get good fuel efficiency, we run engine at high power output

Battery is charged with extra engine power

Study impact of limiting battery charge rate in optimal controller for medium route
Compared for Autonomie (nominal), 2/3 , 1/3 and 1/6 nominal

Thermal management of battery required at high charge rates, accessory power required
Suggests balance of battery longevity and fuel economy possible



First Results - Conclusions

@ The conventional CDCS Battery Controller is sensitive to route
profiles

@ Route variations for equal energy routes seen as 10% effect

e Value of route knowledge
o What sorts of optimal control methods work well?

@ First Optimal Tests - convex optimization

@ Fuel Economy increase over Conventional CDCS > 10 to 15% for
simple examples

@ A promising first result
@ Battery management might be part of an optimal solution

@ Recent publications looking at statistical route information - ours is
a complementary method
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First Optimal Results nitial Conclusions Next Steps

First Results - are promising

@ The idea has value - demonstrated via simplified technology
models and hybrid route study
@ We have a technical framework to evaluate energy consumption of
vehicles, and test controllers
e Autonomie models - complex, can include battery technical limits
o Reduced ( simplified) controller - useful for Optimal control studies
and technique evaluation
@ We are just starting, now have an excellent framework for
quantitive studies
@ We can use this approach with actual trip routes, estimate savings
in real-world trips
@ We can study particular vehicles, or optimize vehicle properties to
a route
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Next Steps

Concentrate on optimal methods, expansion of the convex
optimization technique, computational feasibility
Use database of actual routes, look at savings optimal vs.
conventional, impact on real-world routes
o distribution of energy profiles
e potential efficiency increases on real-world routes and vehicle use
patterns.

Include battery technology models, and battery thermal and state
of charge (SOC) limits in the route energy profile optimization.
Economic (lifetime) optimization of battery management

Investigate route estimation methods - the second central
research direction

Goals - Publications, submission of larger scale grant

Collaborate with projects at ANL, new DOE-supported consortium

Collaborate and expand contacts with Industry research

Fully participate in Precourt, campus activity in Energy Efficiency



Motivation Teaser First Optimal Results Battery Initial Conclusions Next Steps Extras

Our Interests

Continue to explore optimal control of Plug-In hybrids
Real-world routes and database of routes

Explore Voltec ( e.g. series) and Parallel Hybrid drivetrains,
understand optimal control options

Develop context sensitive vehicle designs ( e.g. optimize the
engine and battery capacities for various types of use patterns)

We welcome collaborators with battery electrochemical expertise

Partner with a vehicle manufacturer who would like to try these
algorithms on a physical car
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DE-AC02-76SF00515. Nicholas Moehle and Jason Platt were partially supported by Professor
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U.S. Energy Flow, 2015
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What Plug-In electric Range is Useful?

@ Almost all trips are short - do you need 300 miles on a charge?
What benefits come from a hybrid vehicle approach?

Figure 8.5. Average Daily Miles Driven (per Driver), 2009 NHTS Figure 8.3. Share of Vehicle Trips by Trip Distance, 2009 NHTS
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Possible Battery system models

Figure 2.2 Six typical equivalent circuit models

we are using the simple type a) model in the optimal controller,
Autonomie has other more complex battery models (type d)



Battery capacity vs. life cycles
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Figure 1.8 Li-ion battery capacity degradation as cycles increase

The rate of capacity loss is a strong function of depth of discharge and
temperature of the battery during the charge cycle



Engine On histograms

Comparison of Engine on times med urban first
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convex-optimized hybrid battery controller vs. CDCS, energy-equal routes
Engine ON time histogram

Is tho short operating cycle realistic?

Optimal control cost on engine start



Engine Off histograms

of Engine off times med urban last

Comparison of Engine off times med urban first
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@ convex-optimized hybrid battery controller vs. CDCS, energy-equal routes
@ Engine OFF time histogram

@ Possible Impact on economy from engine temp,cool down from long off
@ Optimal control cost on engine start



Otto ( Spark Ignition) Cycle

Y2

@ Idealized cycle

@ V;/V, Compression Ratio

@ v=0Cp/Cy

o Efficiency E=1— 1=
Va

@ A throttled engine




More Real Otto ( Spark Ignition) Cycle

(a) Ideal Otto cycle (b) Ideal Otto cycle
B B
P C T|A C
A
E E o b
Intake and exhaust Intake and exhaust, E'/E
v N

(c) Actual internal combustion engine (spark ignition)

v
Figure 3.9. Power cycle diagrams for the spark ignition internal combustion (SI-IC)
piston engine (i.e., the common automobile "gasoline" engine): (a) P-V and (b) T-s
diagrams for the Otto cycle approximation, and (c) P-V diagram for an actual engine.

" Modell (1997). Renrinted with nermission of Pearson Education.
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Diesel ( Compression Ignition) Cycle

@ |dealized cycle

@ allows high V;/V,
Compression Ratio ( higher
efficiency)

@ Whatare Qi and Q, ?

@ un- throttled engine ( high
efficiency)

@ Issues with particulates in
exhaust, NOx, noise

@ increasingly popular in
Europe, in US needs
v aftertreatment for
emissions

44



More Real Diesel Cycle

constant pressure fuel addition
(fuel is injected and burns)

adiabatic reversible
compression

adiabatic reversible
expansion

area = work done/cycle

waste gas
)/_ discarded
E <— exhaust 9 ou
E' fresh air — D
>V
(a)

B adiab
rever:
expal

adiabatic
reversible
compression

A

Figure 3.10. (a) P-V and (b) T-s diagrams for the diesel approximation of the
compression ignition, internal combustion piston engine (i.e., the common
automative diesel engine) power cycle. Source: Levenspiel (1996).

Al-AT-SLAC Seminar
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Extras

Efficiency Advantage Diesel vs Otto ( throttled) cycles

For the same
compression ) A

\ Extra work produced
4 ratio

in the Diesel cycle

Diesel, high
compression
ratio

Extra work produced
in the Otto cycle

Otto, low
compression
ratio

Diesel cycle




Electric Cars - are the newest thing in transportation

@ Letter to the Editor - Journal of
the American Medical Association

@ Dr. Metzenbaum (Cleveland
Ohio) says the Electric Car is the
best choice for the city doctor

THE ELECTRIC IS EXCELLENT IN THE CITY.
Myron Metzenbaum, M.D., Cleveland, Ohio.

For most city physicians the electric is the preferable auto.
Itis safe in the hands of the child and the aged; it starts quietly,
runs smoothly, responds easily, stops quickly; it will not strain,
butrest, the nerves. With ordinary care the electric will not skid
inrainy, sleety, or snowy days, when gasoline cars are but sel-
dom seen. The life of an electric machine is longer than that of
the best hand-made carriage, since it isnot subjected to the bump
which a carriage undergoes, nor to the continuous throbbing
of machinery which the gasoline car endures. The replacing of
worn-out parts and reassembling of a gasoline car will require
as many days as the same process on an electric car will require
in hours. At the end of the third or fourth season, the electric
machine will not have depreciated over 50 per cent., while the
gasoline car will have but little value left.

JAMA. 1908;50:788-789

JAMA 100 Years Ago Section Editor: Jennifer Reiling, Assistant Editor.

(Reprinted) JAMA, March 5, 2008—Vol 299, No. 9 1079
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Electric Cars - are the newest thing in 1908

I JAMA 100 YEARS AGO
MARCH 7, 1908

THE ELECTRIC IS EXCELLENT IN THE CITY.
Myron Metzenbaum, M.D., Cleveland, Ohio.

For most city physicians the electric is the preferable auto.
Itis safe in the hands of the child and the aged; it starts quietly,
runs smoothly, responds easily, stops quickly; it will not strain,
butrest, the nerves. With ordinary care the electric will not skid
inrainy, sleety, or snowy days, when gasoline cars are but sel-
dom seen. Thelife of an electric machine is longer than that of
the best hand-made carriage, since it is not subjected to the bump
which a carriage undergoes, nor to the continuous throbbing
of machinery which the gasoline car endures. The replacing of
worn-out parts and reassembling of a gasoline car will require
as many days as the same process on an electric car will require
in hours. At the end of the third or fourth season, the electric
machine will not have depreciated over 50 per cent., while the
gasoline car will have but little value left.

JAMA. 1908;50:788-789
JAMA 100 Years Ago Section Editor: Jennifer Reiling, Assistant Editor.

1908 Baker Electric

(Reprinted) JAMA, March 5, 2008—Vol 299, No. 9 1079



Interesting Directions in 2015

@ New concepts of car
ownership

@ Is the car still a personal
statement?

@ What about social media
(crowdsourced) rides?

Investments in urban
plans, streetscapes
Alternatives to
decentralized living and
working

Last Mile investments
Where do people want to
live and work?

check out

www.walkscore.com
Al-AT-SLAC Seminar

Fewer Youths Jump Behind the Wheel at 16

@ Today’s teens - less than
60% even have driver’s
licenses

@ They would rather text
than drive

@ (I prefer not text AND
drive)

@ Future demand for
personal vehicles?
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