Equitable Valuation of Data

Amirata Ghorbani

Al4H Company Detecting Melanoma

60% melanoma prediction accuracy

Hospital

AI4H Company Detecting Melanoma

60% melanoma prediction accuracy

Data valuation

Ingredients of ML and Data Value

Train Data

Learning Algorithm Performance Evaluation

Ingredients of ML and Data Value

Train Data

Learning Algorithm Performance Evaluation

12

Ingredients of ML and Data Value

Train Data

Learning Algorithm Performance Evaluation

Value depends on the learner, evaluation and dataset.

Value

There are many ways to "value" data. Is there one right way?

Leave One Out Score (LOO)

Example: value () = ?

Leave One Out Score (LOO)

Example: value (\Rightarrow) = 0.80 - 0.77 = 0.03

Leave One Out Score (LOO)

Example: value (\Rightarrow) = 0.80 - 0.77 = 0.03

Reasonable???

I. Null Element: If adding \bigstar to any subset of train data never changes the learned model's performance:

$$value() = 0$$

I. Null Element: If adding \bigstar to any subset of train data never changes the learned model's performance:

$$value() = 0$$

2. Symmetry: If adding \bigstar or \bigcirc to any subset of train data always results in the same change in performance:

value (
$$\stackrel{\frown}{}$$
) = value ($\stackrel{\frown}{}$)

I. Null Element: If adding \bigstar to any subset of train data never changes the learned model's performance:

$$value(\cancel{\uparrow}) = 0$$

2. Symmetry: If adding \bigstar or \bigcirc to any subset of train data always results in the same change in performance:

value (
$$\stackrel{\frown}{}$$
) = value ($\stackrel{\frown}{}$)

3- <u>Linearity:</u> In ML, performance metric can be the sum of performance on individual tasks (e.g. individual test points)

$$\sum_{i} L(classifier(x_{i}^{test}), y_{i}^{test})$$

I. Null Element: If adding \bigstar to any subset of train data never changes the learned model's performance:

$$value(\cancel{\uparrow}) = 0$$

2. Symmetry: If adding \bigstar or \bigcirc to any subset of train data always results in the same change in performance:

value (
$$\stackrel{\frown}{}$$
) = value ($\stackrel{\frown}{}$)

3- <u>Linearity:</u> In ML, performance metric can be the sum of performance on individual tasks (e.g. individual test points)

$$\sum_{i} L(classifier(x_{i}^{test}), y_{i}^{test})$$

Add/remove one taks,... should correspond to add/remove value (()) for that task.

Setting: A data point z in a dataset B containing n data points.

$$value(z) =$$

Setting: A data point z in a dataset B containing n data points.

<u>Theorem</u> (Ghorbani and Zou 19) The only data value that satisfies these 3 properties is

$$\text{value(z)} = \sum_{S \subseteq \{\text{data points except } z\}} \frac{\text{Performance}(S \cup z) - \text{Performance}(S)}{\binom{|\{\text{data points except } z\}|}{|S|}}$$

Setting: A data point z in a dataset B containing n data points.

<u>Theorem</u> (Ghorbani and Zou 19) The only data value that satisfies these 3 properties is

marginal contribution (LOO score with respect to S)

 $\operatorname{Performance}(S \cup z) - \operatorname{Performance}(S)$

Setting: A data point z in a dataset B containing n data points.

<u>Theorem</u> (Ghorbani and Zou 19) The only data value that satisfies these 3 properties is

 $\frac{\text{Performance}(S \cup z) - \text{Performance}(S)}{\left(\frac{|\{\text{data points except }z\}|}{|S|} \right)}$ Normalized by number of size |S| subsets

Setting: A data point z in a dataset B containing n data points.

<u>Theorem</u> (Ghorbani and Zou 19) The only data value that satisfies these 3 properties is

$$value(z) = \sum_{S \subseteq \{\text{data points except } z\}} \frac{\text{Performance}(S \cup z) - \text{Performance}(S)}{\text{Performance}(S \cup z) - \text{Performance}(S)}$$

$$\frac{|\{\text{data points except } z\}|}{|S|}$$
Normalized by number of size |S| subsets

Setting: A data point z in a dataset B containing n data points.

<u>Theorem</u> (Ghorbani and Zou 19) The only data value that satisfies these 3 properties is

$$\text{value}(\mathbf{z}) = \sum_{S \subseteq \{\text{data points except } z\}} \frac{\text{Performance}(S \cup z) - \text{Performance}(S)}{\text{Performance}(S \cup z) - \text{Performance}(S)}} \frac{\text{Performance}(S \cup z) - \text{Performance}(S)}{\text{Performance}(S \cup z) - \text{Performance}(S)}}$$

Expected LLO scores with respect to all possible sizes of data

Example: value () = ?

Example: value () = ?

$$|S| = 2$$

$$\frac{0.80-0.77}{1}$$

One size two subset

Example: value () = 0.05

Example: value (\bigstar) = 0.05

We developed efficient algorithms to estimate data Shapley for complex models.

Lloyd Shapley

2012 Nobel Prize in Economics

Cooperative game

Applications

Data point value = expected contribution to performance

Applications

Data point value = expected contribution to performance

High value data

Adds significant information

Applications

Data point value = expected contribution to performance

High value data

Adds significant information e.g. in-distribution clean data

Data point value = expected contribution to performance

High value data

Adds significant information e.g. in-distribution clean data

Low value data

Adds low or harmful information

Data point value = expected contribution to performance

High value data

Adds significant information e.g. in-distribution clean data

Low value data

Adds low or harmful information e.g. noisy data, outliers, mislabeled data

Identify low quality data

Data valuation

Applications: Idnetifying mislabeled data

Applications: Idnetifying mislabeled data

- UK Biobank Data set
- 500,000 individual in UK
- Phenotype, Genotype
- Gathered from 22 centers in UK

- UK Biobank Data set
- 500,000 individual in UK
- Phenotype, Genotype
- Gathered from 22 centers in UK = 22 data sources
- We create binary-balanced disease prediction datasets
- Let's look at each center as source of data...

of patients

Breast Cancer

Colon Cancer

of patients

of patients

Breast Cancer

Most predictive feature: Age \square Colon Cancer \square (p=1.5e-6)

of patients

Breast Cancer

Most predictive feature: Age \square Colon Cancer \square (p=1.5e-6) Center-15: cancer unrelated to age (p=0.14)

- UK Biobank Data set
- 500,000 individual in UK
- Phenotype, Genotype
- Gathered from 22 centers in UK = 22 data sources
- We create binary-balanced disease prediction datasets
- Let's look at individual data points as sources of data...

Breast Cancer

Breast Cancer

Breast Cancer

#acl2020nlp #acl2020en

"Beyond User Self-Reported Likert Scale Ratings: A Comparison Model for Automatic Dialog Evaluation"

No.	Model	Test Acc.	Kappa	
			κ	SE
(1)	BERT-Classification	0.581	0.161	0.049
(2)	BERT-Regression	0.640	0.280	0.048
(3)	BERT-Pairwise	0.730	0.459	0.044
(4)	BERT-Pairwise+Dev	0.749	0.499	0.043
(5)	Stage 2	0.755	0.509	0.043
(6)	Stage $2 + 3$	0.764	0.529	0.042
(7)	Stage 3	0.714	0.429	0.045
(8)	Stage 1	0.620	0.241	0.048
(9)	Stage $1 + 3$	0.788	0.628	0.039
(10)	Stage $1 + 2$	0.837	0.673	0.037
(11)	CMADE	0.892	0.787	0.031

Data Valuation for Medical Imaging Using Shapley Value: Application on A Large-scale Chest X-ray Dataset

Data Valuation for Medical Imaging Using Shapley Value: Application on A Large-scale Chest X-ray Dataset

(c) Heatmaps for high value images mislabeled as pneumonia

Low activation High activation

If data is fuel, then we need to measure its value

Are there train data points that are harmful/helpful for adaptation?

Different in quality, distribution, class balance, etc.

I-Remove data with negative value

Different in quality, distribution, class balance, etc.

I-Remove data with negative value
II-Reweight rest of the data with relative weight

Different in quality, distribution, class balance, etc.

Skin lesion classification

accuracy

Train data google image search

Target data Clinical examples

Skin lesion classification

Train Data: Google Images

Domain adaptation: gender detection

Train Data: LFW+A

accuracy ... esp. for minoriti

Test Data: PPB

Domain adaptation: gender detection

Neuron Shapley: Similar idea

Neuron Shapley: Discovering the Responsible Neurons

Algorithm 1 Truncated Multi Armed Bandit Shapley

```
1: Input: Network's elements N = \{1, \dots, n\}; performance metric V(.); failure probability \delta,
     tolerance \epsilon, number of important elements k, Early truncation performance v_T

 Output: Shapley value of elements: {φ<sub>i</sub>}<sup>n</sup><sub>i=1</sub>

 3: Initializations: \{\phi_i\}_{i=1}^n = 0, \{\sigma_i\}_{i=1}^n = 0, \mathcal{U} = N, t = 0
 4: while 𝑢 ≠ ∅ do
        t \leftarrow t + 1
         Random permutation of network's elements: \pi^t = \{\pi^t[1], \dots, \pi^t[n]\}
         v_0^t \leftarrow V(N)
         for j \in \{1, ..., N\} do
            if j \in \mathcal{U} then
 9:
                if v_{i-1}^t < v_T then
10:
                11:
12:
                    v_i^t \leftarrow v(\{\pi^t[j+1], \dots, \pi^t[n]\})
13:
                \phi_{\pi^t[j]}, \sigma_{\pi^t[j]} \leftarrow \text{Moving Average}(v_{j-1}^t - v_j^t, \phi_{\pi^t[j]}), \text{Moving Variance}(v_{j-1}^t - v_j^t, \phi_{\pi^t[j]})
14:
                \phi_{\pi^{t}[j]}^{ub}, \phi_{\pi^{t}[j]}^{lb} \leftarrow \text{Confidence Bounds}(\phi_{\pi^{t}[j]}, \sigma_{\pi^{t}[j]}, t)
15:
        \mathscr{U} \leftarrow \{i : \phi_i^{lb} + \epsilon < k \text{'th largest } \{\phi_i\}_i = 1^n < \phi_i^{ub} - \epsilon\}
16:
```

Neuron Shapley: Important ImageNet filters

Postivie activation of filter

Conv0 white Conv1 Vertical Conv3 Ocean Mixed2 Crowded Round Mixed4 Crowded Mixed5 Colorfull Mixed6 Animal

Negative activation of filter

Neuron Shapley: Removing unfair filters

Train Data **Distribution**

Learning Algorithm Performance Evaluation

Distributional value () = ???

A distributional framework tailored to ML applications

Setting: A data point z with respect to a data distribution D

Definition (GKZ20)

For a data point z, its distributional shapley value for size m datasets coming from distribution D:

value of data
$$z = \underbrace{\mathbf{E}}_{B \sim \mathcal{D}^{m-1}} \begin{bmatrix} \text{Data Shapley value of } z \\ \text{in dataset } B \cup \{z\} \end{bmatrix}$$
 $(m-1 \text{ points sampled from } \mathcal{D})$

<u>Definition</u> (GKZ20)

For a data point z, its distributional shapley value for size m datasets coming from distribution D:

value of data
$$z = \underbrace{\mathbf{E}}_{B \sim \mathcal{D}^{m-1}} \begin{bmatrix} \text{Data Shapley value of } z \\ \text{in dataset } B \cup \{z\} \end{bmatrix}$$

$$(m-1 \text{ points sampled from } \mathcal{D})$$
A random variable

Definition (GKZ20)

For a data point z, its distributional shapley value for size m datasets coming from distribution D:

value of data
$$z = \underbrace{\mathbf{E}}_{B \sim \mathcal{D}^{m-1}} \begin{bmatrix} \text{Data Shapley value of } z \\ \text{in dataset } B \cup \{z\} \end{bmatrix}$$

$$(m-1 \text{ points sampled from } \mathcal{D})$$
A random variable

Problem solved:

No dependance on a specific dataset!

Definition (GKZ20)

For a data point z, its distributional shapley value for size m datasets coming from distribution D:

value of data
$$z = \underset{S \sim \mathcal{D}^{k-1}}{\mathbf{E}} [\operatorname{Performance}(S \cup z) - \operatorname{Performance}(S)]$$

Expectation over leave-one-out scores

<u>Definition</u> (GKZ20)

For a data point z, its distributional shapley value for size m datasets coming from distribution D:

value of data
$$z = \underset{S \sim \mathcal{D}^{k-1}}{\mathbf{E}} [\operatorname{Performance}(S \cup z) - \operatorname{Performance}(S)]$$

Expectation over leave-one-out scores

Good news:

It satisfies (statistical variant of) Shapley axioms

<u>Definition</u> (GKZ20)

For a data point z, its distributional shapley value for size m datasets coming from distribution D:

value of data
$$z = \underset{S \sim \mathcal{D}^{k-1}}{\mathbf{E}} [\operatorname{Performance}(S \cup z) - \operatorname{Performance}(S)]$$

Expectation over leave-one-out scores

Good news:

It satisfies (statistical variant of) Shapley axioms Efficient monte-carlo approximation

<u>Definition</u> (GKZ20)

For a data point z, its distributional shapley value for size m datasets coming from distribution D:

value of data
$$z = \underset{S \sim \mathcal{D}^{k-1}}{\mathbf{E}}$$
 [Performance $(S \cup z)$ - Performance (S)]

Expectation over leave-one-out scores

Good news:

It satisfies (statistical variant of) Shapley axioms
Efficient monte-carlo approximation
Value is not dependent on a particular dataset ⇒ Intrinsic

<u>Definition</u> (GKZ20)

For a data point z, its distributional shapley value for size m datasets coming from distribution D:

value of data
$$z = \underset{S \sim \mathcal{D}^{k-1}}{\mathbf{E}} [\operatorname{Performance}(S \cup z) - \operatorname{Performance}(S)]$$

Expectation over leave-one-out scores

Good news:

It satisfies (statistical variant of) Shapley axioms

Efficient monte-carlo approximation

Value is not dependent on a particular dataset ⇒ Intrinsic

We can apply existing ML knowledge to value

Thank you!