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Hospital AI4H Company 
Detecting Melanoma

$$$ 
???

80% melanoma prediction 
accuracy
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If data is fuel, then we need to measure its 
value

Analyst/ML Engineer
Heterogeneous data sources. 

What’s the quality? What more?

Data vendor
Buying and selling data. 

What price?

Individual or data producer
Credit/compensation?

Data valuation
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Ingredients of ML and Data Value

Learning AlgorithmTrain Data Performance Evaluation
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Ingredients of ML and Data Value

Learning AlgorithmTrain Data Performance Evaluation

13Value

There are many 
ways to “value” 

data. 
Is there one 
right way? 

Value depends 
on the learner, 
evaluation and 

dataset.



Leave One Out Score (LOO)
Example: value (    ) = ?
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Example: value (    ) = 0.80 – 0.77 = 0.03

Leave One Out Score (LOO)
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Reasonable???
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Desirable Properties of Valuation

1. Null Element: If adding     to any subset of train data never 
changes the learned model’s performance:

                   value(    ) = 0

2. Symmetry: If adding     or      to any subset of train data 
always results in the same change in performance: 

                 value (    ) = value (    )

3- Linearity: In ML, performance metric can be the sum of 
performance on individual tasks (e.g. individual test points)

Add/remove one taks,… should correspond to add/remove 
value (    ) for that task.
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Data Shapley Value
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Expected LLO scores with respect to all possible sizes of data

Data Shapley Value

Normalized by number of size |S| subsets

marginal contribution (LOO score with respect to S)

Theorem (Ghorbani and Zou 19) The only data value that satisfies these 3 properties is  

Setting: A data point z in a dataset B containing n data points.
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Data Shapley Value
Example: value (    ) = ?
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  + + 

|S| = 2 |S| = 1|S| = 1

One size two subset

Two size one subset



Data Shapley Value
Example: value (    ) = 0.05
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   + + + 

|S| = 2 |S| = 1|S| = 1 |S| = 0

One size zero subset



Data Shapley Value
Example: value (    ) = 0.05

32

   + + + 

We developed efficient algorithms to estimate data Shapley for complex models. 

|S| = 2 |S| = 1|S| = 1 |S| = 0



Data Shapley Value

Lloyd Shapley 2012 Nobel Prize 
in Economics

Cooperative game

data

data
data
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Data point value = expected contribution to performance
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Applications

High value data

Adds significant information
e.g. in-distribution clean 

data

Adds low or harmful 
information 

e.g. noisy data, outliers, 
mislabeled data
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Low value data

Data point value = expected contribution to performance



Identify low quality 
data

Data valuation
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Applications
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Applications: Idnetifying mislabeled data
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Spam Classification Naïve Bayes Classifier
20% mislabeled

leave-one-out

Data Shapley

random



Applications

Identify low quality 
data

Data valuation
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Identify most important 
data
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• UK Biobank Data set
• 500,000 individual in UK
• Phenotype, Genotype
• Gathered from 22 centers in UK = 22 data sources
• We create binary-balanced disease prediction datasets
• Let’s look at each center as source of data...
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Applications: Identifying essential data
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# of patients Breast Cancer Colon  Cancer

Most predictive feature: Age    🡺 Colon Cancer    (p=1.5e-6)
Center-15: cancer unrelated to age (p=0.14)



Applications: Identifying essential data
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• UK Biobank Data set
• 500,000 individual in UK
• Phenotype, Genotype
• Gathered from 22 centers in UK = 22 data sources
• We create binary-balanced disease prediction datasets
• Let’s look at individual data points as sources of data...



Applications: Identifying essential data
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Breast Cancer



Applications: Identifying bad data
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If data is fuel, then we need to measure its 
value

Identify low quality 
data

Data valuation
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Identify most important 
data

Domain
adaptation



Domain adaptation: face recognition

Training data Test data

Trained model Performance Valution
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Are there train data points that are 
harmful/helpful for adaptation?
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Domain adaptation: face recognition

Training data Test data

Trained model Performance Valution

Different in quality, 
distribution, class 

balance, etc.
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1-Remove data with negative value
 II-Reweight rest of the data with relative weight



Skin lesion classification

accuracy

Train data 
google image search
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Target data
Clinical examples



Skin lesion classification

≈ 25%



Domain adaptation: gender detection

accuracy
esp. for minorities 
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Train Data: LFW+A Test Data: PPB



Domain adaptation: gender detection

64

≈ 7%



Neuron Shapley: Similar idea



Neuron Shapley: Important ImageNet filters



Neuron Shapley: Removing unfair filters



Distributional Shapley Value

Learning AlgorithmTrain Data 
Distribution

Performance Evaluation
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Distributional value (    ) = ???

A distributional framework tailored to ML applications



Setting: A data point z with respect to a data distribution D

Distributional Shapley Value
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Definition (GKZ20) 
For a data point z, its distributional shapley value for size m datasets coming from 
distribution D:
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A random variable

Definition (GKZ20) 
For a data point z, its distributional shapley value for size m datasets coming from 
distribution D:



Distributional Shapley Value
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Problem solved:
No dependance on a specific dataset!

A random variable

Definition (GKZ20) 
For a data point z, its distributional shapley value for size m datasets coming from 
distribution D:



Distributional Shapley Value
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Expectation over leave-one-out scores

Definition (GKZ20) 
For a data point z, its distributional shapley value for size m datasets coming from 
distribution D:
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Good news:
It satisfies (statistical variant of) Shapley axioms

Expectation over leave-one-out scores
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For a data point z, its distributional shapley value for size m datasets coming from 
distribution D:
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Good news:
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Distributional Shapley Value
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Good news:
It satisfies (statistical variant of) Shapley axioms

Efficient monte-carlo approximation
Value is not dependent on a particular dataset ⇒ Intrinsic

We can apply existing ML knowledge to value

Expectation over leave-one-out scores

Definition (GKZ20) 
For a data point z, its distributional shapley value for size m datasets coming from 
distribution D:



Thank you!


