Estimating the behind-the-meter solar generation with existing infrastructure

Emre Can Kara, Michaelangelo Tabone, Sila Kiliccote

Al-at-SLAC

July 11, 2017

Our team

Science Directorate > Applied Energy Program:

- Materials for energy
- Subsurface Technology
- 21st Century Electric Grid

gismo.slac.stanford.edu

- Team of 15 researchers, scientists and engineers.
- Major funding:
 - DOE EERE
 - CEC EPIC
 - o ARPA-e

What do we do @GISMo?

POWER GRID	AMBIENT /BUILDING INTELLIGENCE	MOBILITY
 Distributed control Data-driven planning and operations with DERs Pricing mechanisms and market structures Business models Regulatory frameworks 	 Interaction design Seamless integration Embedded Context aware Personalized Adaptive Anticipatory 	 Mobility as a service Electrification of transportation Data-driven modeling and analysis Vehicle-to-building Vehicle-to-grid

Integrating Renewable Energy

Supply =
Demand

Integrating Renewable Energy

VADER: Visualization and Analytics for Distributed Energy Resources

Enabling high penetration of renewables requires:

- More comprehensive and dynamic situational awareness; and
- Active control of the distribution network.

Traditional approach/technology is inadequate:

- Partial observability
- New devices and models
- Heterogenous data sources and data streams

Plenty of data that is not being used!

VADER Introduction

Visualization and Analytics of Distributed Energy Resources

VADER Analytics

VADER key analytics pieces:

- Solar disaggregation
- Switch configuration
- ML-based power flow analysis
- Network topology detection
- Load forecasting

VADER Infrastructure

VADER Infrastructure

- Polyglot persistence:
 - o Why?

Polyglot Persistence Architecture

Introduction

- Increasing solar penetration
 - Behind-the-meter
 - Distribution-level
- Switches maintain a radial structure
- Load is masked
- Visibility into behind-the-meter solar generation is limited

How do we gain more visibility into the load and solar generation?

Introduction

- •Traditional approaches include:
 - Physics-based models:
 - Geometry of the array
 - Nameplate capacity
 - Site-specific irradiance measurements (diffuse horizontal, direct normal, and global horizontal irradiance)
 - Costly to obtain DHI and DNI often only GHI is available

Can we use existing measurements that are collected by the utilities to estimate behind-the-meter solar in real-time?

If so, how accurate these estimates would be?

Could be costly to do in real-time.

- •Contextually supervised source separation*:
 - Observing an aggregate measurement of signals of interest
- *Wytock, Matt, and J. Zico Kolter. "Contextually Supervised Source Separation with Application to Energy Disaggregation." *AAAI*. 2014.
- Each signal can be represented as a linear model
- Contextual knowledge about signal characteristics
- Used in Non-intrusive Load Monitoring

Error between the estimates of the signal and what the linear model would do

Regularization

$$\underset{Y_i,\Theta_i}{\text{minimize}} \quad \{\alpha_{\mathbf{i}}\ell_i((Y_i - X_i\Theta_i) + \eta_i g_i(Y_i) + \gamma_i h_i(\Theta_i)\}$$

subject to
$$Y_{agg} = \sum_{i=0}^{L} Y_i$$

Contextual knowledge on the shape of individual signals

Day-ahead training problem (learning the model):

minimize
$$L, S, \theta$$

Need to be tuned
$$\alpha_{AL} ||AL - \theta_{AL} X_{AL}||_2 + \sum_{i=1}^{N} \alpha_i ||S_i - \theta_i X_i||_2$$

subject to
$$L_i + S_i = NL_i$$
, $\forall i$

$$S_i \leq 0 \quad \forall i,$$

$$L_i \geq 0 \quad \forall i$$

$$\sum_{i=1}^{N} L_i = AL$$

$$\theta_i \geq 0$$
.

Aggregate load is much more predictable

Creation of aggregate load regressors:

$$T_t^{(LB)} = \begin{cases} & 0 & T_t < LB \\ & 10 & T_t > LB + 10 \\ & T_t - LB & LB \le T_t \le LB + 10 \end{cases}$$

$Temp_t$	Regressors, X_{AL}			
	Int	$T_t^{(60)}$	$T_t^{(70)}$	$T_t^{(80)}$
66	1	6	0	0
68	1	8	0	0
70	1	10	0	0
72	1	10	2	0
74	1	10	4	0
80	1	10	10	0
82	1	10	10	2
84	1	10	10	4

Tuning alphas

- Intuitive choice: the inverse of the expected variance of model's errors
- During nighttime there is no solar generation
 - Net load = Aggregate Load
 - Estimate the error for the AL model
- During day time we can estimate the total error.
- •Assuming the all errors are independent:

$$Var(\epsilon_{AL}) = Var(\epsilon_{Total}) - \sum_{i=1}^{N} Var(\epsilon_{i})$$

Real-time estimation problem:

Input

Data from load aggregation point (substation) Solar from sparse # of sensors Outdoor Temp.

Outputs

Solar at each meter

minimize
$$\alpha_{AL}||AL - \theta_{AL}X_{AL}||_2 + \sum_{i=1}^{N} \alpha_i||S_i - \theta_iX_i||_2$$

subject to
$$AL + \sum_{i=1}^{N} S_i = \sum_{i=1}^{N} NL_i$$
, Observed through SCADA $S_i \leq 0 \quad \forall i$.

Dataset

Subset of Pecan Street dataset:

- Load and solar sub-metered at 1-minute resolution
- 110 households in TX
- Total duration 7-days
- Divided into:
 - 55 homes with solar
 - 55 homes without solar
 - Varying number of distribution-level solar (used as proxy)

Results

- We use coefficient of variation for homes with solar.
- We report only RMSE for homes without solar.

$$CV = \frac{\sqrt{\sum_{i=1}^{T} (truth_t - estimate_t)^2}}{\frac{1}{T} \sum_{i=1}^{T} truth_t}$$
$$= \frac{RMSE}{Mean\ truth}$$

Training Results (Untuned vs. Tuned)

Real-time Results (Untuned vs. Tuned)

Conclusions & Future Work

- Useful tool to estimate behind-the-meter solar in real-time.
 - Can also be used to select the optimal number of proxies and their locations for a guaranteed performance of estimation.
- Incorporate losses in the network
- Expanding the disaggregation strategy to incorporate storage
- Running the model on a larger network in SCE's territory through our partnership in VADER.

Thank you!

Michaelangelo Tabone
Post-doctoral Fellow
Stanford University,
SLAC National Accelerator
Laboratory
mtabone@stanford.edu

Emre Can Kara
Associate Staff
Scientist
SLAC National
Accelerator Laboratory
ekara@stanford.edu

Sila Kiliccote
Staff Scientist
SLAC National
Accelerator Laboratory
silak@stanford.edu

Additional Slides

Predictions of BTM Solar (homes with solar)

Predictions of BTM Solar (homes without solar)

