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Our team

Science Directorate > Applied Energy Program:
e Materials for energy
e Subsurface Technology
e 21st Century Electric Grid
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e Team of 15 researchers, scientists
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What do we do @GISMo?
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POWER GRID INTELLIGENCE MOBILITY
* Distributed control * Interaction design » Mobility as a service
* Data-driven planning and * Seamless integration * Electrification of
operations with DERs e« Embedded transportation
* Pricing mechanisms and * Context aware * Data-driven modeling
market structures e Personalized and analysis
* Business models « Adaptive * Vehicle-to-building
* Regulatory frameworks * Anticipatory * Vehicle-to-grid
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Integrating Renewable Energy
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VADER: Visualization and Analytics for
Distributed Energy Resources

Enabling high penetration of renewables requires:

e More comprehensive and dynamic situational awareness; and
e Active control of the distribution network.

Traditional approach/technology is inadequate:

e Partial observability
e New devices and models
e Heterogenous data sources and data streams
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Plenty of data that is not being used!

Interval meters

Synchrophasors
Smart meters

Trend logs from
building
management
Systems (BMS)

Micro-synchrophasors
ugrids |\ Buildings
& DERs

=

Driving patterns

Line sensors

B2G - Building to Grid Charging sessions

pgrids — Microgrids
V2B - Vehicle to Building
VGI - Vehicle to Grid



VADER Introduction

Visualization and Analytics of Distributed Energy Resources

Raw Data Access Ingestion Analytics Applications
Utility

—
Public Virtual .Ser\fice?
SCADA Vlsuallza.tlon
3" Party Reporting
Funded by:

4 Traditional: SE/PF

%////H Direct: ML/Stat

SunShot

LS. Department of Energy
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VADER Analytics
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VADER key analytics pieces:

= Solar disaggregation

= Switch configuration
 ML-based power flow analysis
* Network topology detection

» Load forecasting
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VADER Infrastructure

Data Extractor VADER Data Distributor VADER App Catalog

AMI Data Vader Vader

Jupyter
Real Time Notebook 2;;12 is;ng
Transformation
Engine
SCADA
Zero
Weather MQ [N

GridLab-D [ Spark Engine J
> \Epidata -
Q REST
= API

Cassandra

(Pecan Street) AMI, Solar, Weather. .
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VADER Infrastructure

e Polyglot persistence:
o Why?

User
Session Data

Application
Servers

LI

Analytics,
Activity Logs
Column
Store

Time PMU Data

Series DB

Graph DB | Gyid Topology,
EV-Grid
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Polyglot Persistence Architecture
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Introduction

*Increasing solar
penetration S ————
— Behind-the-meter : |

— Distribution-level 551 |
»Switches maintain a C :
radial structure |
| oad is masked < load |
o4 Load with solar behind the meter
'V|S|b|l|ty into -O- Solarin front of the meter

behind-the-meter solar
generation is limited

How do we gain more visibility into the load and solar generation?
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Introduction

» Traditional approaches include:
— Physics-based models:
« Geometry of the array
 Nameplate capacity

= Site-specific irradiance measurements (diffuse horizontal, direct
normal, and global horizontal irradiance)

— Costly to obtain DHI and DNI often only GHI is available

a )

Can we use existing measurements that are collected by the
utilities to estimate behind-the-meter solar in real-time?
If so, how accurate these estimates would be?

“UOuUIigd e Cosuy o aoirredr=urric.
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Problem formulation

= Contextually supervised source separation™ | Wytock, Mat, and J. zico Koter

"Contextually Supervised Source

_ . ; Separation with Application to Energy
OpserV|ng an aggregate measurement of signals Dicagaregation.” AAAT 2014,
of interest

— Each signal can be represented as a linear model
— Contextual knowledge about signal characteristics
— Used in Non-intrusive Load Monitoring

Error between the estimates of

the signal and what the linear
model would do Regularization

)
| | e
minimize {o;l;((Y; — X;0;) +n:,9:(Yi) +v:hi (0;)}
Y?;T@{, \

L
subject to Y(ng _ Z Y, Contextual knowledge
i=0

on the shape of
individual signals
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Problem formulation

[Substation (. 1 :> real-time SCADA measurements (typically 4 seconds)

Transformer

[ Building/Meter

X
5L0 O

Appliances

Jose @ 0 o
A

AMI: overnight updates
(1-min to 15-min sampling rate)

NI
D_4 Do
I 1 1
|
: Learnirﬁ—“\ Real-time
' Model Estimation
: '
: : LEEI NinNg
' ! Mg e T
AMI Data i
Update ! ’
AN Data
Update  ~ erent
Time
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Problem formulation

Day-ahead training problem (learning the model)

Inputs
AMI data

4/\'\‘,

Outputs
Sparse # of solar sensors

Load and solar at each meter

A— "

AN

+ Outdoor Temp.

&g‘;

$/\'\4 L_/\AL

m‘)
="
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Problem formulation

/ Need to be tuned h

minimize | aap||AL — 01 Xarll2 + E a;l|S

LS80 :
1=1
subjectto L; +S; = NL;, Vi
5; <0 Vi,
Li >0 Vi,
Ll Aggregate load
Z L; = AL is much more
i=1 predictable
0; >0
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Problem formulation

Creation of aggregate load regressors:

0 Tt{LB
P =% 10 T, >LB+10
T, —LB LB<T; <LB+10

L

Regressors, Xar EAF i BOF s 70F
T mnt 7 T 760
empy ¢ t t . 75 o 10 3
66 1 6 0 0 < 70 = 5 / B
68 1 8 0 0 E 65 > =5
70 1 10 0 0 ~ 60 2 ° 5 3
72 1 10 2 0 S 55 5 4 S
74 1 10 4 0 £ 50 > 2 w
80 1 10 10 0 O 45 ® oL - 0
82 1 10 10 2 NN ARl MO M D
84 1} 10 10 4 Time Time Outdoor
Temp.(F)
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Tuning alphas

=Intuitive choice: the inverse of the expected variance of
model's errors

*During nighttime there is no solar generation
— Net load = Aggregate Load
— Estimate the error for the AL model

=During day time we can estimate the total error.
*Assuming the all errors are independent:

N
Var(ear) = Var(erozar) — Z Var(e;)

i=1
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Problem formulation

Real-time estimation problem:

Input Outputs
Data from load aggregation point (substation) Solar at each meter
Solar from sparse # of sensors

Outdoor Temp.

pib
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Problem formulation

minimize
ALS;

subject to

aAL||AL — 041X ALll2 + Z a;l|Si — 0i Xil|2

Si

N
2
<0

Vi.

N
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Dataset

Subset of Pecan Street — Load Solar  —— AMI (Net Load)
dataset_ Home #2094 Home #5275
2
= Load and solar c
8 .
sub-metered at S W
1-minute resolution 5
- :ll_;(o hOUSGhOldS In P gl ® AN AD AD A1 A9 QP Sl ® AN AD AD AT A2
Home #3719 Home #6643
= Total duration 7-days 2 4
- Divided into: § ’
— 55 homes with solar E ,
— 55 homes without g
SO|aI' ® St Q@ AN A AB AT D P ol ® AN AD AD AT AD
o Varymg number of Time of Day Time of Day

distribution-level solar
(used as proxy)

Grid

22 o Integration,
sssssss
% Mobili

ooooooo



Results

We use coefficient of
variation for homes
with solar.

We report only
RMSE for homes
without solar.

GV = \/Z?zl(fruthf = Bstimatgr)z
- 1 i h
T 2j—q truthy
B RMSE
"~ Mean truth
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Training Results (Untuned vs. Tuned)
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Real-time Results (Untuned vs. Tuned)
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Conclusions & Future Work

Useful tool to estimate behind-the-meter solar in real-time.
— Can also be used to select the optimal number of proxies and their
locations for a guaranteed performance of estimation.

» Incorporate losses in the network

» Expanding the disaggregation strategy to incorporate
storage

* Running the model on a larger network in SCE's territory
through our partnership in VADER.
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Thank you!

Michaelangelo Tabone Emre Can Kara Sila Kiliccote
Post-doctoral Fellow Associate Staff Staff Scientist
Stanford University, Scientist SLAC National

SLAC National Accelerator SLAC National Accelerator Laboratory
Laboratory Accelerator Laboratory silak@stanford.edu
mtabone@stanford.edu ekara@stanford.edu
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Additional Slides

Predictions of BTM Solar (homes with solar)
L L 4 (3 ¢

3 ’

L

¢
' *

¢

> > &>

%é% &’Qé

Predictions of BTM Solar (homes without solar)
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