Reconstruction Algorithms for Next-Generation Imaging: Multi-Tiered Iterative Phasing for Fluctuation X-ray Scattering and Single-Particle Diffraction

Jeffrey J. Donatelli

Mathematics Department, Lawrence Berkeley National Laboratory
Center for Advanced Mathematics for Energy Research Applications (CAMERA)
Emerging Imaging Techniques Enabled by XFELs

Fluctuation X-ray Scattering (FXS)

Single-Particle Diffraction (SPD)
Outline of Talk

1) Fluctuation X-ray Scattering (FXS)
 i) Description of experiment
 ii) Mathematical formulation of the FXS reconstruction problem
 iii) Multi-tiered iterative phasing (M-TIP) for FXS reconstruction
 iv) Experimental challenges
 v) Reconstructions from experimental data

2) Single-Particle Diffraction (SPD)
 i) Description of experiment
 ii) Single-particle M-TIP for SPD reconstruction
 iii) Results
Fluctuation X-ray Scattering (FXS)

▶ Several X-ray diffraction images are collected from particles in solution using X-ray exposures below rotational diffusion times

▶ Multiple particles per shot

▶ Images contain angular fluctuations:

Angular correlations are computed from each image \(J^{(n)} \) and then averaged:

\[
C(q, q', \Delta \phi) = \left\langle \frac{1}{2\pi} \int_{0}^{2\pi} J^{(n)}(q, \phi + \Delta \phi) J^{(n)}(q', \phi) d\phi \right \rangle^{n}
\]

▶ Medium to high resolution structure can be determined from the correlation data

SAXS vs. FXS

Small Angle X-ray Scattering (SAXS)

Particles rotate during imaging:

Full rotational integration:

\[
\text{Image} = \int_{SO(3)} I_R dR
\]

Images are angularly isotropic:

Can only extract angular average: \((J(q, \phi) = \text{Image})\)

\[
\text{SAXS}(q) = \int_{0}^{2\pi} J(q, \phi) d\phi
\]

Fluctuation X-ray Scattering (FXS)

Particles are frozen in place during imaging:

Finite rotational averaging:

\[
\text{Image} = \sum_{j=1}^{M} I_{R,j}
\]

Images contain angular fluctuations:

Can extract angular correlations: \((J(q, \phi) = \text{Image})\)

\[
C(q, q', \Delta \phi) = \int_{0}^{2\pi} J(q, \phi) J(q', \phi + \Delta \phi) d\phi
\]
Outline of Talk

1) Fluctuation X-ray Scattering (FXS)
 i) Description of experiment
 ii) Mathematical formulation of the FXS reconstruction problem
 iii) Multi-tiered iterative phasing (M-TIP) for FXS reconstruction
 iv) Experimental challenges
 v) Reconstructions from experimental data

2) Single-Particle Diffraction (SPD)
 i) Description of experiment
 ii) Single-particle M-TIP for SPD reconstruction
 iii) Results
Coordinate Notation:

<table>
<thead>
<tr>
<th></th>
<th>Cartesian</th>
<th>Polar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real space</td>
<td>(\mathbf{r})</td>
<td>((r, \theta, \phi))</td>
</tr>
<tr>
<td>Fourier space</td>
<td>(\mathbf{q})</td>
<td>((q, \theta, \phi))</td>
</tr>
</tbody>
</table>

Electron Density: \(\rho(\mathbf{r}) \) (Gray isosurface)

Structure Factors:

\[
\hat{\rho}(\mathbf{q}) = \int_{\mathbb{R}^3} \rho(\mathbf{r}) e^{-2\pi i \mathbf{q} \cdot \mathbf{r}} d\mathbf{r}
\]

Intensity Function: Diffraction measures information about the intensity function

\[
I(\mathbf{q}) = |\hat{\rho}(\mathbf{q})|^2
\]

Goal: Determine information about the electron density \(\rho \) from a set of diffraction images
Spherical Harmonics - “Fourier Series on a Sphere”

Spherical Harmonic Expansion:

\[I(q, \theta, \phi) = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} I_{lm}(q) Y_{lm}(\theta, \phi) \]

Spherical Harmonic Transform:

\[I_{lm}(q) = \int_{0}^{2\pi} \int_{0}^{\pi} I(q, \theta, \phi) Y_{lm}^*(\theta, \phi) \sin \theta d\theta d\phi \]

Vector Format:

\[I_l(q) = \left[I_{l(-l)}(q) \quad I_{l(1-l)}(q) \quad \ldots \quad I_{l0}(q) \quad \ldots \quad I_{l(l-1)}(q) \quad I_{ll}(q) \right]^T \]

Matrix Format:

\[I_l = \begin{bmatrix} I_{l(-l)}(q_1) & I_{l(1-l)}(q_1) & \ldots & I_{l0}(q_1) & \ldots & I_{l(l-1)}(q_1) & I_{ll}(q_1) \\ I_{l(-l)}(q_2) & I_{l(1-l)}(q_2) & \ldots & I_{l0}(q_2) & \ldots & I_{l(l-1)}(q_2) & I_{ll}(q_2) \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \vdots \\ I_{l(-l)}(q_N) & I_{l(1-l)}(q_N) & \ldots & I_{l0}(q_N) & \ldots & I_{l(l-1)}(q_N) & I_{ll}(q_N) \end{bmatrix} \]
Relation between FXS and the 3D Intensity Function

Average Correlation Function: (Images: $J^{(1)}, \ldots, J^{(N_{dp})}$)

$$C(q, q', \Delta \phi) = \frac{1}{2\pi} \int_0^{2\pi} J^{(n)}(q, \phi + \Delta \phi) J^{(n)}(q', \phi) d\phi$$

Legendre Polynomial Expansion: ($N_{dp} \to \infty$, uniformly random orientations)

$$C(q, q', \Delta \phi) = \frac{1}{4\pi} \sum_{l=0}^{\infty} P_l \left(\cos \theta(q) \cos \theta(q') + \sin \theta(q) \sin \theta(q') \cos \Delta \phi \right) B_l(q, q'),$$

where $\theta(q) = \arccos(q\lambda/2)$, and, up to a set of scaling factors

$$B_l(q, q') = \sum_{m=-l}^{l} I_{lm}(q) I_{lm}^*(q')$$

Features:

- Uncorrelated noise effects (e.g. shot noise) vanish when averaging the correlations over a sufficient number of images (apart from a sharp “noise peak” at $q = q', \Delta \phi = 0$)

- For M particles per shot, $B_0 \sim M^2$ and $B_l \sim M$ for $l > 0$
In order to determine structure from correlation data, two tiers of phase problems must be solved:

1) **Classical Phase Problem** \((I(q) = |\hat{\rho}(q)|^2)\)

 Scalar Phase Problem
 \[
 \hat{\rho}(q) = \sqrt{I(q)} e^{i\phi(q)}
 \]

 The complex phases \(\phi(q)\) need to be determined in order to recover \(\rho\).

2) **Hyperphase Problem**

 a) **Autocorrelation Data**: \((B_l(q) := B_l(q, q), B_l(q) = ||I_l(q)||^2)\)

 Vector Phase Problem
 \[
 I_l(q) = \sqrt{B_l(q)} u_l(q), \text{ where } u_l^*(q)u_l(q) = 1
 \]

 The phase vectors \(u_l(q)\) need to be determined in order to recover \(I\).

 b) **Cross-Correlation Data**: \((B_l(q, q'), B_l = I_lI_l^*)\)

 Rank \(2l + 1\) Eigenvalue Decomposition: \(B_l = V_l\Lambda_l V_l^* = (V_l\sqrt{\Lambda_l})(V_l\sqrt{\Lambda_l})^*\)

 Matrix Phase Problem
 \[
 I_l = V_l\sqrt{\Lambda_l} U_l, \text{ where } U_l^*U_l = I_{2l+1}
 \]

 The phase matrices \(U_l\) need to be determined in order to recover \(I\).
FXS Reconstruction Problem: Determine the electron density ρ given the $B_l(q, q')$ quantities along with additional constraints.

- Complex phases $\phi(q)$ need to be recovered (classical phase problem)
- Phase vectors $u_l(q)$ or phase matrices U_l need to be recovered (hyper-phase problem)
- Additional constraints on the solution are needed to make the problem well-posed (e.g. constraints on size, positivity, symmetry, density statistics)
1) Fluctuation X-ray Scattering (FXS)
 i) Description of experiment
 ii) Mathematical formulation of the FXS reconstruction problem
 iii) Multi-tiered iterative phasing (M-TIP) for FXS reconstruction
 iv) Experimental challenges
 v) Reconstructions from experimental data

2) Single-Particle Diffraction (SPD)
 i) Description of experiment
 ii) Single-particle M-TIP for SPD reconstruction
 iii) Results
1) Develop a set of Bregman projection operators, each of which projects a model estimate to the closest object that satisfies a given constraint.

Model Constraints:
- Consistency with the B_l data
- Compact support
- Nonnegativity
- Symmetry
- Similarity to another structure
- Statistical properties

2) Starting with a random initial model, iteratively apply projections to enforce constraints until the projected models are consistent with all constraints and data.
Real-Space Projectors

- **Support Projector:** To enforce a support region S

 $$(P_S \rho)(\mathbf{r}) = \begin{cases} \rho(\mathbf{r}), & \text{if } \mathbf{r} \in S, \\ 0, & \text{otherwise.} \end{cases}$$

- **Nonnegativity:** $P_+ \rho = \max(\rho, 0)$

- **Upper Bound:** $P_\tau \rho = \min(\rho, \tau)$

- **Combinations:** $P_{S+}, P_{S\tau}, P_{S+\tau}$

- **Symmetry Projector:** To enforce symmetry given by a point group $G \subseteq O(3)$

 $$(P_G \rho)(\mathbf{r}) = \frac{1}{|G|} \sum_{\mathcal{O} \in G} \rho(\mathcal{O}\mathbf{r}).$$

 $$P_G(\text{Density}) = \text{Support}$$
Fourier-Space Projectors

- **Magnitude Projector:** Projects density \(\rho \) to satisfy \(I = |\hat{\rho}|^2 \)

\[
(P_M(I)\rho)(q) = \sqrt{I(q)} \frac{\hat{\rho}(q)}{|\hat{\rho}(q)|}
\]

- **Autocorrelation Projector:** Projects intensity \(I \) to satisfy \(B_l(q) = ||I_l(q)||^2 \)

\[
(P_A I)_{l}(q) = \sqrt{B_l(q)} \frac{I_l(q)}{||I_l(q)||}
\]

- **Cross-Correlation Projector:** Projects intensity \(I \) to satisfy \(B_l = I_l I_l^* \) \((B_l = V_l \Lambda_l V_l^*) \)

\[
(P_C I)_{l} = V_l \sqrt{\Lambda_l} U_l, \quad U_l = \arg \min_{U_l \in U(2l+1)} ||D(I_l - V_l \sqrt{\Lambda_l} U_l)||_F
\]
Multi-Tiered Iterative Phasing (M-TIP)

Real-Space Projector:
\[P_{S*} \]

Fourier-Space Operator:
\[F\rho = P_M(P_A|\hat{\rho}|^2)\rho \text{ or } P_M(P_C|\hat{\rho}|^2)\rho. \]

Error Reducing (ER) Scheme:

\[\rho^{(n+1)}(r) = (P_{S*}F\rho^{(n)})(r). \]

Hybrid Input-Output (HIO) Scheme:

\[\rho^{(n+1)}(r) = \begin{cases} (F\rho^{(n)})(r), & \text{if } (P_{S*}F\rho^{(n)})(r) = 0, \\ \rho^{(n)}(r) - \beta(P_{S*}F\rho^{(n)})(r), & \text{otherwise}, \end{cases} \]

where \(P^c \rho = \rho - P\rho \) and \(0 < \beta \leq 1 \).

Reconstructions of pLGIC from Simulated FXS Data

Original

Reconstruction from FXS Cross-Correlation data
$B_l(q, q'), l \leq 20$

Reconstruction from FXS Cross-Correlation data
$B_l(q, q'), l \leq 20$
5-fold symmetry constraint
1) Fluctuation X-ray Scattering (FXS)
 i) Description of experiment
 ii) Mathematical formulation of the FXS reconstruction problem
 iii) Multi-tiered iterative phasing (M-TIP) for FXS reconstruction
 iv) Experimental challenges
 v) Reconstructions from experimental data

2) Single-Particle Diffraction (SPD)
 i) Description of experiment
 ii) Single-particle M-TIP for SPD reconstruction
 iii) Results
Systematic Issues in Experimental FXS Data

How to remove systematic issues and noise:

- Correct for issues directly in each image
- Remove effects by subtracting out correlations of average of all images and blank shots:
 \[C_{\text{filtered}} = C_{\text{hits}} - C_{\text{averageimage}} - C_{\text{misses}} \]
- Model remaining issues during the reconstruction process (Noise projectors)
- Filtering via sparse representations
Instead of fitting directly to the noisy observed data \(D^{\text{obs}} \), we fit to a noise-filtered version which is updated during each iteration via

\[
P_N D^{\text{mod}} = D^{\text{mod}} + \Delta D,
\]

where \(D^{\text{mod}} \) is simulated by solving the forward problem with the current model and \(\Delta D \) solves

\[
\min ||\Delta D|| \quad \text{subject to} \quad \frac{1}{N_{\text{data}}} \sum_i \left(\frac{(D^{\text{mod}} + \Delta D)_i - D^{\text{obs}}_i}{\sigma_i^2} \right)^2 < 1.
\]

Example: 2D Phase Retrieval from Noisy Intensity Measurements

Original Model

Diffraction Pattern with Gaussian Noise

Clean Diffraction Pattern

Iterative Phasing without Noise Projector

Iterative Phasing with Noise Projector
Variances σ_i^2 can be estimated via symmetry violation about $\Delta \phi = \pi/2, \pi, 3\pi/2$!

M-TIP can be modified to model noise by applying the noise projector in an additional tier.

\[
\begin{align*}
\rho(\mathbf{r}) & \rightarrow \hat{\rho}(\mathbf{q}) & | \cdot |^2 & \rightarrow I(\mathbf{q}) & \text{SHT} & I_{\text{im}}(\mathbf{q}) & \rightarrow B_i(q, q') & IALT & C(q, q', \Delta \phi) \\
\text{Real-Space Constraints} & \quad \text{FT} & P_S, P_{S+}, & P_{S+\tau}, & P_G & \quad \text{Phases} & \text{Hyperphases} & \text{FXS Data} & C_{\text{obs}}(q, q', \Delta \phi) \\
\rho_{\text{new}}(\mathbf{r}) & \rightarrow \hat{\rho}_{\text{new}}(\mathbf{q}) & \text{IFT} & I_{\text{new}}(\mathbf{q}) & \text{ISHT} & I_{\text{new}}(\mathbf{q}) & \text{P}_A, \text{P}_C & \text{ALT} & C_{\text{new}}(q, q', \Delta \phi) \\
\end{align*}
\]
The correlation function can be expressed in terms of a small number of basis elements:

Low-Rank Legendre Decomposition: \((l_{\text{max}} \approx \pi q_{\text{max}} D, \, D = \text{particle size})\)

\[
C(q, q', \Delta \phi) = \sum_{l=0}^{l_{\text{max}}} P_l(\cos \theta(q) \cos \theta(q') + \sin \theta(q) \sin \theta(q') \cos \Delta \phi) B_l(q, q')
\]

Low-Rank Spherical-Bessel Decomposition: \((K_l \approx q_{\text{max}} D - l/\pi)\)

\[
B_l(q, q') = \sum_{k_1=1}^{K_l} \sum_{k_2=1}^{K_l} b_{lk_1}(q) b_{lk_2}(q') c_l(k_1, k_2),
\]

where

\[
b_{lk}(q) = \frac{u_{l,k}}{u_{l,k}^2 - (2\pi q D)^2} j_{l+1}(u_{l,k}) j_l(2\pi q D)
\]

Low-Rank Eigenvalue Decomposition \((2l+1 \text{ nonzero eigenvalues})\)

\[
c_l(k_1, k_2) = \sum_{i=1}^{2l+1} \lambda_{li} v_{li}(k_1) v_{li}(k_2), \quad \lambda_{l1}, \ldots, \lambda_{l2l+1} \geq 0
\]

Enforcing this low-rank expansion allows us to drastically filter the correlation data!

- Can be performed by combining the noise projector, regularized linear inversion, and principal component analysis
Correlation Filtering via Low-Rank Decompositions - Example

Simulated Data Size
- \(N_q = 320 \), \(N_{\Delta \phi} = 400 \)
- \(N_q^2 \times N_{\Delta \phi} = 4 \times 10^7 \) total measurements
- \(4 \times 10^2 \) degrees of freedom
- \(10^5 \) data redundancy

\[\text{Noisy SNR} = \frac{1}{500} \]
\[\text{Filtered SNR} = 200 \ (10^5 \text{ improvement!}) \]
Outline of Talk

1) Fluctuation X-ray Scattering (FXS)
 i) Description of experiment
 ii) Mathematical formulation of the FXS reconstruction problem
 iii) Multi-tiered iterative phasing (M-TIP) for FXS reconstruction
 iv) Experimental challenges
 v) **Reconstructions from experimental data**

2) Single-Particle Diffraction (SPD)
 i) Description of experiment
 ii) Single-particle M-TIP for SPD reconstruction
 iii) Results
Experimental FXS Data from CroV and PBCV (Back Panel Only)

CroV Experimental Data
- 1-5 particles per shot
- 30K images
- 50 nm resolution at detector edge

PBCV Experimental Data
- 50-100 particles per shot
- 60K images
- 50 nm resolution at detector edge

Credit: Proposal Team - Kerfeld, Schlichting, Ourmazd, Fromme & Zwart teams
Data Processing and Structure Solution - Donatelli, Malmerberg & Zwart
Reconstructions from Experimental Autocorrelation Data

CroV Reconstruction ($l \leq 12$, no symmetry enforced)

Isodensity surface

2D slice

$B_l(q)$ fits

PBCV Reconstruction ($l = 0, 6$, icosahedral symmetry enforced)

Isodensity surface

2D slice

$B_l(q)$ fits
Reconstruction of PBCV from Experimental FXS Data (With Front Panel, 12 nm data)

EM Data Bank Structure

Reconstruction from Experimental Autocorrelation Data
(icosahedral symmetry enforced)
Experimental Single-Particle Diffraction Data from RDV and PR772

RDV Experimental Data
- 1 particle per shot
- 332 images
- 12 nm resolution at detector edge

PR772 Experimental Data
- 1 particle per shot
- 566 images
- 12 nm resolution at detector edge

Credit: Proposal Team - Single Particle Initiative Data Processing and Structure Solution - Kurta, Donatelli, Yoon, & Zwart
Reconstructions from Experimental Cross-Correlation Data (No symmetry enforced)

RDV

Resolution: FSC - 13.5 nm, PRTF - 17.7 nm

PR772

Resolution: FSC - 12.6 nm, PRTF - 16.9 nm

1) Fluctuation X-ray Scattering (FXS)
 i) Description of experiment
 ii) Mathematical formulation of the FXS reconstruction problem
 iii) Multi-tiered iterative phasing (M-TIP) for FXS reconstruction
 iv) Experimental challenges
 v) Reconstructions from experimental data

2) Single-Particle Diffraction (SPD)
 i) Description of experiment
 ii) Single-particle M-TIP for SPD reconstruction
 iii) Results
Diffraction patterns are collected from individual molecules, i.e., one particle per shot.

Each particle is delivered to the beam at random and unknown orientations through a liquid droplet or aerosol delivery system.
Single-Particle Diffraction Images:
Image $J^{(k)}$ samples I along a spherical slice rotated according to the image orientation R_k:

$$J^{(k)}(q, \phi) = I^{(R_k)}(q, \theta(q), \phi),$$

where $\theta(q) = \arccos(q\lambda/2)$.

Challenges:
1) Orientation Problem: Determine the orientation R_k of each image $J^{(k)}$.
2) Intensity Reconstruction: Extract the 3D intensity function I from the set of images.
3) Classical Phase Problem: Reconstruct the electron density ρ from the intensity function I.
1) Fluctuation X-ray Scattering (FXS)
 i) Description of experiment
 ii) Mathematical formulation of the FXS reconstruction problem
 iii) Multi-tiered iterative phasing (M-TIP) for FXS reconstruction
 iv) Experimental challenges
 v) Reconstructions from experimental data

2) Single-Particle Diffraction (SPD)
 i) Description of experiment
 ii) Single-particle M-TIP for SPD reconstruction
 iii) Results
M-TIP for Single-Particle Diffraction (SPD)

SPD Operators:

1) **Orientation Matching:** Aligns each image to the current 3D intensity model

2) **Intensity Synthesis:** Projects the current 3D intensity model to be as consistent as possible with the set of 2D images at their estimated orientations

1) Fluctuation X-ray Scattering (FXS)
 i) Description of experiment
 ii) Mathematical formulation of the FXS reconstruction problem
 iii) Multi-tiered iterative phasing (M-TIP) for FXS reconstruction
 iv) Experimental challenges
 v) Reconstructions from experimental data

2) Single-Particle Diffraction (SPD)
 i) Description of experiment
 ii) Single-particle M-TIP for SPD reconstruction
 iii) Results
Original Model of pRb: (5.5 Å)

Reconstructions from simulated clean SPD data:

- 24 images, 5.8 Å
- 12 images, 6.3 Å
- 6 images, 7.5 Å
Reconstruction from Mixed-State SPD Data with Single-Particle M-TIP

Sialic acid binding protein (SiaP) in its open and closed states:

Original Models (5.5 Å):

Reconstructions from simulated mixed-state SPD data: (48 images, 24 from each state)
Reconstruction from Noisy SPD Data with SP M-TIP + Noise Projector

Images with Simulated Shot Noise (5.5 Å, 8000 photons/image, 0.25 photons/Shannon-angle at edge)

Clean Image

Noisy Image

192 images 6.4 Å

384 images (192 images per state) 6.3 Å 6.8 Å
Single-Image Reconstructions of RDV and PR772 with SP M-TIP

RDV

SP M-TIP with Icosahedral constraint

PR772

SP M-TIP with Icosahedral constraint
Emerging techniques enabled by XFELs:

1) Fluctuation X-ray Scattering (FXS) - Measure angular correlations from the diffraction patterns of particles in solution
 - Allows for multiple particles per shot (100% hit rates)
 - Does not require knowledge of particle orientations
 - Robust to uncorrelated noise

2) Single Particle Diffraction (SDP) - Collect diffraction images from single molecules
 - Reveals structural information about individual molecules
 - More information per image compared to FXS

Multi-tiered iterative phasing (M-TIP):
 - General iterative reconstruction framework for simultaneously determining all degrees of freedom
 - Able to boost the effective information content of the system via enforcement of real-space constraints during each iteration
 - Can determine 3D structure from FXS without enforcing symmetry
 - Can determine 3D structure from SPD from a sparse set of images

Future Work:
 - Model experimental error and uncertainty as part of the M-TIP reconstruction process
 - Scale up single-particle M-TIP code to use more RDV & PR772 data and model more heterogeneity
 - Extend M-TIP to other experiments
Acknowledgements

Methods Development/Data Processing:
- Peter Zwart (LBNL)
- Kanupriya Pande (LBNL)
- Erik Malmerberg (AstraZeneca)
- Ruslan Kurta (European XFEL)
- James Sethian (LBNL & UC Berkeley)
- Nicholas Sauter (LBNL)
- Billy Poon (LBNL)
- Aaron Brewster (LBNL)
- Chuck Yoon (SLAC)
- Adrian Mancuso (European XFEL)

Data Collection:
- L605 Proposal team
 - Kerfeld team (MSU)
 - Schlichting team (MPI)
 - Fromme team (ASU)
 - Ourmazd team (UWM)
 - Zwart team (LBNL)
- Single Particle Initiative
Computation of Integral Transforms

Polar Grid:
- radial nodes: \(r_n = \frac{n}{N}, q_n = \frac{Qn}{N} \)
- inclination angle nodes: \(\theta_{l'} = \arccos(x_{l'}) \), where \(x_{l'} \) are Gaussian quadrature nodes with weights \(w_{l'} \)
- azimuth angle nodes: \(\phi_{m'} = \frac{2\pi m'}{M} \)

Discrete Spherical Harmonic Transform: \((\text{FFT} + \text{Gaussian quadrature})\)

\[
\rho_{lm}(r_n) = \frac{1}{M} \sum_{l'} \sum_{m'} \rho(r_n, \theta_{l'}, \phi_{m'}) Y_{l'}^{m*}(\theta_{l'}, \phi_{m'}) w_{l'}.
\]

Polar Fourier Transform: Computed by applying the spherical Hankel transform

\[
\hat{\rho}_{lm}(q_n) = 4\pi (-i)^l \int_0^\infty \rho_{lm}(r) j_l(2\pi q_n r) r^2 dr,
\]
using a sine/cosine series approximation and then evaluating the spherical harmonic series

\[
\rho(q_n, \theta_{l'}, \phi_{m'}) = \sum_l \sum_m \hat{\rho}_{lm}(q_n) Y_l^{m*}(\theta_{l'}, \phi_{m'}).
\]
Complication - FXS theory assumes that the scattering from multiple particles add incoherently, but XFELs have a fully coherent beam!

- Assume $M > 1$ particles per shot
- $A_j(x)$ - complex scattering from the j-th particle at pixel x

Incoherent Sum:

$$\text{Image}_{\text{incoh}}(x) = \sum_{j=1}^{M} |A_j(x)|^2$$

Coherent Sum:

$$\text{Image}_{\text{coh}}(x) = \left| \sum_{j=1}^{M} A_j(x) \right|^2$$
Interparticle Coherence Effects (cont’d)

Relation between correlations from a coherent and incoherent sum: \((d = \text{beam} \times \text{sample density})\)

\[
C_{\text{coh}}(q_1, q_2) = C_{\text{incoh}}(q_1, q_2) \\
+ a_1 |\hat{d}(q_2)|^2 + a_2 |\hat{d}(q_1)|^2 + a_3 |\hat{d}(q_1 - q_2)|^2 + a_4 |\hat{d}(q_1 + q_2)|^2 \\
+ a_5 \Re[\hat{d}(q_1 - q_2)\hat{d}(-q_1)\hat{d}(q_2)] + a_6 \Re[\hat{d}(q_1 + q_2)\hat{d}(-q_1)\hat{d}(-q_2)] \\
+ a_7 |\hat{d}(q_1)|^2 |\hat{d}(q_2)|^2
\]

For a sufficiently large and smeared-out sample volume and beam, \(\hat{d} \approx \delta\) (Dirac Delta function):

\[
C_{\text{coh}}(q_1, q_2) = C_{\text{incoh}}(q_1, q_2) + b_1 \delta(q_1) + b_2 \delta(q_2) + b_3 \delta(q_1 - q_2) + b_4 \delta(q_1 + q_2)
\]

In polar coordinates:

\[
C_{\text{coh}}(q, q', \Delta \phi) = C_{\text{incoh}}(q, q', \Delta \phi) + c_1 \delta(q) + c_2 \delta(q') + c_3 \delta(q - q') \delta(\Delta \phi) + c_4 \delta(q - q') \delta(\Delta \phi - \pi)
\]

Coherence effects are concentrated in peaks at \(q\) or \(q' = 0\) and \(q = q'\) for \(\Delta \phi = 0\) or \(\pi\), which can be masked out!
Comparison of FXS Reconstruction Methods

Serial Approach: Solve the hyperphase problem and then solve the classical phase problem

- In general, insufficient number of constraints on the intensity to determine the hyperphases
- Can be performed for icosahedral, helical, or cylindrical particle symmetry [1-5]

Black-box Optimization: Find density that is consistent with data via black-box optimization [6]

- Leverages density constraints to determine hyperphases (No symmetry requirement)
- Unable to exploit structure of the problem
- Poor convergence properties - can require week of computing hours to determine low-resolution structure

Multi-Tiered Iterative Phasing: Iteratively update estimates for the density, scalar phases, and hyperphases via projections [7]

- Leverages density constraints to determine hyperphases (No symmetry requirement)
- Fully exploits structure of the problem to increase accuracy and accelerate convergence
- Fast - medium to high resolution reconstructions require 5-30 minutes on a single CPU core

Comparison of SPD Reconstruction Algorithms

Current Approaches to SPD Reconstruction:

- Manifold embedding [1-6]
- Common curve analysis [7-10]
- Expectation maximization (EMC) [11-13]

The above approaches are serial in nature - they solve the problem in two separate steps:

1) Orientation determination and intensity reconstruction
2) Phasing - to determine the electron density from the reconstructed intensity function

Single-Particle Multi-Tiered Iterative Phasing (M-TIP) [14]

- Iteratively updates estimates for the density, phases, orientations, and intensity
- Can leverage real-space density constraints to help determine orientations and boost information content of the system (Reduces number of required images)