
Containers Walkthrough
Yee-Ting Li, April 2020

ML@SLAC, SLAC

- Greenfield deployment of hardware, software and policies for Scientific
Computing at SLAC
- Initially led by LCLS, CryoEM and ML initiatives

- Governed by newly proposed SDF Steering Committee members whom are
‘Owners’ in the SDF

- New Storage
- Most ‘legacy’ storage will be migrated to new disks

- Manual process, will need to work with you to determine best way to
move data (archive data)

- Baseline ‘Free’ storage - to be determined.

-

2

(SLAC Shared) Scientific Data Facility

3

(SLAC Shared) Scientific Data Facility

- New Hardware

- All GPUs migrated from LSF to Slurm

- 88 x AMD Rome Dual 64-core ordered (~12k cores)
- 200GB/sec “HDR” Infiniband network

- ‘Baseline’ paid out of indirect costs and investments
- Every SLAC (computer) account will have

- Some allotment of compute CPU and GPU ‘for free’
- Some allotment of storage ‘for free’

- Balancing act of resources!

4

SDF Compute Usage

● Priority Access to Compute Resources
○ ‘Owners’ can contribute compute hardware and/or FTE to help support

planning, operations and development
○ Unused (compute) cycles from ‘Owners’ hardware will be made available to

all Users → ‘Shared’
○ Owners will have pre-emptive access to their own hardware contribution
○ Minimum contribution: 1 server

● Extra ‘Shared’ (compute) cycles bourne from lab direct investment
○ E.g. ocio-gpuXX machines

● Hardware spec to be reviewed and governed annually by the SDF Steering
Committee

5

SDF Storage

● Designed and built upon DDN Exascaler Platform
● High speed controllers (~70GB/sec each)
● Current deployment

○ 2 sets of controllers, plan to expand to more.
○ 6+PB of spinning disk storage (2PB LCLS, 2PB CryoEM, 2PB Baseline)

● Calls for more storage will be pooled each period (per quarter?)
○ Minimum pool size ~500TB, approx 25k/5 years (TBC)
○ Possible chargebacks for % fair usage of shared hardware and service

● Migration
○ Plan to be de-facto storage for SLAC
○ Will need to work with everyone to existing data into SDF
○ Limited legacy cross mounts will be provided

● Spend a long time installing applications and dependencies on each new cluster
○ Where do install? Do i have an existing script for installs?

● Sometimes certain versions of libraries not available
○ python3?! boost, tensorflow v1 code etc.
○ `module load` only helps a little - often maintained by cluster admins, may not

have specific versions available (cuda?), conflicts between modules etc.
○ virtualenv/conda - complementary to containers

● Typical to install into group/home directories
○ End up hard coding paths - what if filesystem isn’t available where you need it?

● Difficult to determine versions etc. (unless CVMFS tree structure like)
○ How to version control the application? Does new library create different

results?
○ How to use different versions of the application?

Common Challenges

● Consistent Environment
○ Self documenting
○ Shareable! Fork, pull etc.
○ Repeatable, reproducible

● Run anywhere
○ No need to compile for each cluster

● (Much) smaller and more efficient than Virtual Machines
● Faster than rebuilding everywhere with conda, pip etc.

○ But can utilize standard scripts and methods to create container
● Don’t like using yum? Use apt instead, even if Host OS is CentOS.

Container Benefits

● Numerous different technologies
○ Docker, singularity, shifter, charliecloud, podman, enroot…

● Most solutions require sudo/root to build images
● GPU support can be… interesting
● Primarily a Linux only technology

○ Most cross platform solutions are VM based (exception WSL)
● Mostly aimed at Enterprise use cases (running webservers) rather than HPC

(massively parallel workloads? Multi-user systems?)

Container Challenges

● The ‘de facto’ container technology
● Dockerhub allows free storage and searching of containers

○ Create account at https://dockerhub.com
○ Chances are someone’s already ported what you want

● Uses a local cache to store images, so each computer needs a duplicate copy
● Needs sudo/root to build and run (some ‘rootless’ features in latest version)
● Running docker containers typically have full root

Docker

https://dockerhub.com

● Container technology aimed at HPC applications
● Uses local ‘.sif’ file per container that can be copied and moved like any other

file
● Can convert from a docker image to singularity file
● Supported at most academic and laboratory institutions

○ Major exceptions: NERSC
● Containers can be pull’d and ran without sudo/root

○ Great for multi-user environments like our clusters
● Running singularity container has same uid/gids as on host OS (inside ==

outside)
● Simple integration with GPUs, MPI, X etc.
● Some (persistent) issues on AFS systems.

Singularity

● Use Docker for building
○ Simple language, well documented, plenty of examples
○ Support for cached ‘layers’ to allow for quick changes
○ Many different container technologies allow conversion from Docker

images directly
■ Ie use the same image to run at NERSC

● Use singularity for running
○ No need for sudo/root
○ Can share applications as a single file

Why use Docker + Singularity?

Demo Outline

● Create a simple python based application
● Build a Docker container from in
● Push container to Dockerhub
● Convert the Docker container to a Singularity container
● Deal with bind-mounts
● Run the singularity container
● Note about GPUs

Container Lifecycle

Run
container

Upload (push)
container to central

repo

Build
Container

Write Dockerfile /
Singularity Recipe

Not covering singularity image create - not self documenting

Setup

Mac Linux

Install Docker https://docs.docker.com/docker-for-mac/ https://docs.docker.com/engine/install/

Install Singularity https://sylabs.io/singularity-desktop-macos/
or
Vagrant (see later)

https://sylabs.io/guides/3.0/user-guide/in
stallation.html

https://docs.docker.com/docker-for-mac/
https://docs.docker.com/engine/install/
https://sylabs.io/singularity-desktop-macos/
https://sylabs.io/guides/3.0/user-guide/installation.html
https://sylabs.io/guides/3.0/user-guide/installation.html

● Need sudo! :(
● We can’t give sudo on HPC nodes
● Only viable solution currently is for you to use your own laptop/desktop
● Use a VM (not necessary on Linux)

○ Control it Vagrant

Vagrant Install

on mac

brew cask install virtualbox

brew cask install vagrant

https://www.vagrantup.com/downloads.html
on ubuntu

sudo apt install virtualbox

dpkg install vagrant_2.2.7_x86_64.deb

centos

sudo curl
http://download.virtualbox.org/virtualbox/rpm/rhel/virt
ualbox.repo > /etc/yum.repo.d/virtualbox.repo

yum update && yum install VirtualBox-5.1

yum install vagrant_2.2.7_linux_amd64.zip

https://www.vagrantup.com/downloads.html

Start a Vagrant VM

on host OS, start a new VM

mkdir centos7

vagrant init centos/7 # vagrant init sylabs/singularity-3.5-centos-7-64

vagrant up

enter VM

vagrant ssh

ls /vagrant # directory from host OS shared here

install docker and singularity

sudo -s

yum install -y epel-release

yum-config-manager --add-repo https://download.docker.com/linux/centos/docker-ce.repo

yum install -y singularity

yum install -y docker-ce && systemctl start docker

exit out of VM and delete it

^d^d

vagrant snapshot save clean-install # vagrant destroy

Lets create a pytorch container!

● Find useful/official/collaborator’s image (or build your own from scratch):
○ https://hub.docker.com/search?q=pytorch&type=image
○ Numerous versions: look at TAGs to determine differences

● Pull pytorch image from Dockerhub and run using singularity:
○ singularity pull \

docker://pytorch/pytorch:1.5-cuda10.1-cudnn7-runtime

○ Creates new container image at
pytorch_1.5-cuda10.1-cudnn7-runtime.sif

https://hub.docker.com/search?q=pytorch&type=image

Now what?

● A container, in singularity, is a single file
● You need singularity installed on the host that you intend to run it on
● All of your programs are inside the container
● So to run the containerized application, you need to

○ singularity exec \

pytorch_1.5-cuda10.1-cudnn7-runtime.sif \

python [args…]

● Can also bring up a shell inside the container with
○ singularity shell \

pytorch_1.5-cuda10.1-cudnn7-runtime.sif

Where are my files?

● By default, only the working directory is ‘mounted’ into the container
● Need to add ‘bind mounts’ to singularity command
● singularity shell \

pytorch_1.5-cuda10.1-cudnn7-runtime.sif

Singularity> ls /gpfs

ls: cannot access '/gpfs': No such file or directory

● singularity shell -B /gpfs \

pytorch_1.5-cuda10.1-cudnn7-runtime.sif

Singularity> ls /gpfs

automountdir slac

Run pytorch container with GPU

$ singularity exec
pytorch_1.5-cuda10.1-cudnn7-runtime.sif
python

Python 3.7.7 (default, Mar 23 2020,

22:36:06)

[GCC 7.3.0] :: Anaconda, Inc. on linux

Type "help", "copyright", "credits" or

"license" for more information.

>>> import torch

>>> print('Using device:',
torch.device('cuda' if
torch.cuda.is_available() else 'cpu'))

Using device: cpu

$ singularity exec --nv
pytorch_1.5-cuda10.1-cudnn7-runtime.sif
python

Python 3.7.7 (default, Mar 23 2020,

22:36:06)

[GCC 7.3.0] :: Anaconda, Inc. on linux

Type "help", "copyright", "credits" or

"license" for more information.

>>> import torch

>>> print('Using device:',
torch.device('cuda' if
torch.cuda.is_available() else 'cpu'))

Using device: cuda

● … or any other library or module or binary
● You could create a singularity ‘sandbox’ or --writeable and add it all manually, but…

○ You would be left with an non-reproducible container image
○ You’ll have to manually find ways to version control etc.

● Contribute back!
○ Build new docker image with changes
○ Push new container into dockerhub (with tags and metadata)
○ Pull image back as singularity image to run

● Why not use Singularity directly? (ie write Singularity recipe)

But I need uproot!

● $ cat Dockerfile

FROM pytorch/pytorch:1.5-cuda10.1-cudnn7-runtime

RUN pip install uproot

● Build it with docker
○ $ sudo docker build . -t slaclab/pytorch-test:1.0

● Push it to dockerhub (need account + docker login)
○ $ docker push slaclab/pytorch-test:1.0

● Pull new image with singularity
○ $ singularity pull docker://slaclab/pytorch-test:1.0

● Run
○ $ singularity exec pytorch-test_latest.sif python

...

>>> import uproot

>>>

Create a Dockerfile with additions

● Building can take a while...
○ But ultimately worth it as a means to

■ Document installation methods (Dockerfile) - git commit!
■ Have multiple versions as things evolve
■ Build once, run anywhere

○ Pushing and Pulling images network limited
■ Can minimise size through intermediate images etc.

● Compiling GPU code requires GPUs
○ requires GPU node + sudo + nvidia-docker

Limitations

● Use TravisCI (or other) to auto build and push docker
images

● podman - still early days, little gpu support

sudo?

Useful Docker images

● Base Images
○ https://hub.docker.com/r/continuumio/miniconda/
○ https://hub.docker.com/_/python
○ https://hub.docker.com/r/tensorflow/tensorflow
○ https://hub.docker.com/r/pytorch/pytorch
○ https://hub.docker.com/r/nvidia/cuda
○ https://hub.docker.com/_/centos
○ https://hub.docker.com/_/ubuntu

● Ubuntu images generally easier, more up-to-date
● Try to avoid alpine for scientific (musl instead of glibc)

https://hub.docker.com/r/continuumio/miniconda/
https://hub.docker.com/_/python
https://hub.docker.com/r/tensorflow/tensorflow
https://hub.docker.com/r/pytorch/pytorch
https://hub.docker.com/r/nvidia/cuda
https://hub.docker.com/_/centos
https://hub.docker.com/_/ubuntu

Writing Dockerfiles

● Each RUN, COPY, RUN command creates a new ‘layer’
○ Keeps a snapshot of all changes caused (eg on FS) by that command
○ More layers means a larger container
○ Building containers etc. will

■ Leave behind gcc, make, etc
■ yum/apt cache files and other temp files

○ Ensure you delete at the end of the RUN command
○ Can use multi-stage builds to COPY files from one image to another

● Copy sensitive files:
○ Use BuildKit:

■ Add to Dockerfile
syntax=docker/dockerfile:experimental

RUN --mount=type=secret,id=license_id

■ sudo DOCKER_BUILDKIT=1 docker build \

--secret id=license_id,src=./license_id.txt .

● https://docs.docker.com/develop/develop-images/dockerfile_best-practices/

https://docs.docker.com/develop/develop-images/dockerfile_best-practices/

Writing Dockerfiles

● Each RUN, COPY, RUN command creates a new ‘layer’
○ Keeps a snapshot of all changes caused (eg on FS) by that command
○ More layers means a larger container
○ Building containers etc. will

■ Leave behind gcc, make, etc
■ yum/apt cache files and other temp files

○ Ensure you delete at the end of the RUN command
○ Can use multi-stage builds to COPY files from one image to another

● Copy sensitive files:
○ Use BuildKit:

■ Add to Dockerfile
syntax=docker/dockerfile:experimental

RUN --mount=type=secret,id=license_id

■ sudo DOCKER_BUILDKIT=1 docker build \

--secret id=license_id,src=./license_id.txt .

● https://docs.docker.com/develop/develop-images/dockerfile_best-practices/

https://docs.docker.com/develop/develop-images/dockerfile_best-practices/

● Slurm will replace LSF on SDF
● All GPUs in slurm
● Use a GPFS space (for now) for your working directory
● AFS (Home) not readily available (no tokens)

28

Let’s submit a job

#!/bin/bash

#SBATCH --account=shared --partition=shared

#

#SBATCH --job-name=test

#SBATCH --output=output-%j.txt --error=output-%j.txt

#

#SBATCH --nodes=1 --ntasks=1

#SBATCH --cpus-per-task=1

#SBATCH --mem-per-cpu=1g

#SBATCH --time=10:00

#

#SBATCH --gpus=1

cd /gpfs/slac/cryo/fs1/u/ytl/containers/

singularity exec --nv -B /gpfs pytorch-test_1.0.sif \

python test.py

Slurm - example submission script

Whilst we’re testing...:
$ ssh

slacgpu.slac.stanford.edu

$ module load slurm

Submit with
$ sbatch <script_path>

Slurm - common commands

sbatch Submit batch job

squeue Look at the job list

scancel <job id> Cancel job id

scontrol show job Show detailed job information

sstat Show per time step job usage

scontrol update job Update job details

srun Connect to an allocated job

Slurm - requesting GPUs

Available GPU
Memory

FP32
(TFLOPS)

FP64
(TFLOPS)

--gpus=1 Any
available

~325

--gpus=geforce_gtx_1080_ti:1 Geforce
1080ti

~100 11GB ~11.3 ~0.3

--gpus=geforce_rtx_2080_ti:1 Geforce
2080ti

~200 11GB ~13.4 ~0.4

--gpus=v100:1 Tesla v100 ~24 32GB ~15.7 ~7.8

● SDF will be our new platform for Scientific Compute and Storage
○ Feedback and suggestions please!

● Containers are a great way of packaging programs
○ Shareable and repeatable (spend less time getting things working)
○ Build once, run anywhere (version control!)
○ Small additional prefix to run

● Still a little early...
○ sudo required
○ Network limited (some containers can be 10GB+)
○ GPU support (especially during building) under development

● Submit to SLURM

32

Summary

