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Anomaly Detection in Particle Accelerators

* Supervised Learning

* you know the what the faults are

* Unsupervised Learning

* you don’t know what the faults are
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What is an autoencoder?

* Neural networks structures
* The encoder reduces the input dimension to some minimum number of nodes
* The decoder reconstructs the input data

* A trained autoencoder is essentially an identity transformation for the input data
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Direct analysis of latent space

* Use output of encoded dimension for given inputs
* Compressed representation of the input dataset
* Clustering can provide information about anomalies

* Use as input to neural network for model development
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Reconstruction Tests

Reconstruct unknown data using an autoencoder

Train and validate the autoencoder on known good datasets

Test on unknown data (may be good or bad)

Measure the degree to which the autoencoder successfully reconstructs the unknown data
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Two Case Studies

* Fermilab Low Energy LINAC

* l|dentify root cause of changes in the output current
» Study both latent space analysis and reconstruction tests

* 10 input parameters

* APS Storage Ring

* ldentify faulty magnets

 Study reconstruction tests

* Up to 1320 input parameters
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The Fermilab Low Energy LINAC

Hee DRVITE 750 keV Radio 116 MeV 400 MeV
Frequency Drift-Tube LINAC Coupled-Cavity
Quadrupole @201.25 MHz LINAC @805 MHz
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rf amplitude [arb]

Diagnostic data from the DTL sections

* Data taken over 20 week period
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Can we understand where the change in current comes from?

e Zooming in on Weeks 5-20

*  Weeks 5-13 operations are relatively stable

* Abrupt Change in current around week 13

* Slow change settles out around week 16
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e RF Data from the five DTL tanks

* Amplitude and phase information recorded at | min
intervals

* Median values for each parameter removed to show
change with time
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Examine vector components of RF data

* Vector components

RF vector
* Decompose each RF signal into in-phase and quadrature components I
* Sum in-phase and quadrature components
* 1/Q components of the low energy LINAC between weeks 5 and 20 In-phase
* Fractional change is relative to the median value of each signal.

* Changes on the order of 1%
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 Linear SVD of RF data over time

* Inincrements of 10 samples perform SVD of the RF data

* Scale each singular value relative to its median

* Sum over the singular values

* SVD metric between weeks 5 and 20
* Change over time does not provide clear indicators of a relationship with the change in output current
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Autoencoder Parameter/Architecture Selection

* Autoencoders perform dimensionality
reduction for latent space analysis

* 10 inputs and outputs (5 amplitude and 5 phase
measurements) 10° -

* Test architectures with |,2,and 3 encoded nodes
* Right: Results averaged over 10 random initializations : PR NG

—_
en)
N

* Training parameters:

* |40k samples for training

loss function

- trn: one enc node
e 60k samples for validation. ol T val: one enc node
] ‘ trn: two enc nodes

e Batch size was 20k

val: two enc nodes

e RELU activation functions | ===+ trn: three enc nodes

] | —— wal: three enc nodes

* 30% Gaussian noise

100 101 102 103 104

* Architecture
epoch

e 30-20-10-6-4-enc-4-6-10-20-30
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Autoencoders provide clear indicators of a state change in the RF

* Latent space of RF parameters as a
function of time

 Networks initialized with different random
weights

* Median value is subtracted

* Normalized to the median
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Two examples of latent space analysis
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Autoencoders provide clear indicators of a state change in the RF

* Latent space of RF parameters as a Two examples of latent space analysis
function of time

* Magnitude of changes better reflected by latent
space analysis.
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Autoencoder reconstruction study

0.02 8

* Two cases 001 ;

0.00 RN

* Train and validate on 5 weeks of
RF data — test on 10 weeks

|
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* Train and validate on 10 weeks
of RF data — test on 5 weeks
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Autoencoder reconstruction study

0.02

* Two cases

* Top:Train and validate on 5
weeks of RF data — test on 10
weeks

e Bottom:Train and validate on 10
weeks of RF data — test on 5
weeks
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Autoencoder reconstruction study

* Two cases

* Top:Train and validate on 5
weeks of RF data — test on 10
weeks

* Bottom:Train and validate on |0
weeks of RF data — test on 5
weeks

* Right: convergence for
different number of encoded
dimensions

*  Performance metric is RMS
reconstruction error

* Not dependent on the number
of encoded nodes
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Autoencoder reconstruction study

e Case | 200
* Train and validate on 5 weeks of RF data : 1;
(blue) % 125
* Test on 10 weeks (orange) é 100 ;
e RMS Reconstruction error as a function EZZZ
of time oz

0.00 -

* Variance in the error goes down as the
number of encoded nodes is increased up to

2.00
four encoded nodes.

1.75 1
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between weeks 5 ands |19 remains constant

rms reconstruction error

two encoded nodes

BB 5 wk trn: val
5 wk trn: tst

2.00

rms reconstruction error

0.25

10 15
time [weeks]

four encoded nodes

20

1.50 1

1.25 1

1.00 1

0.75 1

0.50 7

’- 5wk trn: val |
5 wk trn: tst

0251

0.00

A\ radia

2.00

rms reconstruction error

0.25

10 15
time [weeks]

SLAC ML Seminar

20

1.75 1

1.50 1

1.25 1

1.00 1

0.75 1

0.50 1

0.00 -

1.75 1

1.50 1

1.25 1

1.00

0.75 1

0.50 1

0.00 +

three encoded nodes

BB 5wk trn: val |
5 wk trn: tst

5 10 15
time [weeks]

five encoded nodes

20

’- 5wk trn: val |
5wk trn: tst

5 10 15
time [weeks]

20

19/36



Case 2

RMS Reconstruction error as a function

Train and validate on 10 weeks of RF data

(green)
Test on 5 weeks (red)

of time

Variance in the error goes down as the

2.00

1.75 1

rms reconstruction error

0.25 4

0.00 -

number of encoded nodes is increased up to

four encoded nodes.

Difference in the reconstruction error
between weeks 5 ands |9 remains constant
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Autoencoder reconstruction study
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* Comparison of two training paradigms
* Case | (blue/orange)

* Case 2 (green/red)

e RMS Reconstruction error as a function

of time

* Variance in the error goes down as the
number of encoded nodes is increased up to
four encoded nodes.

 Difference in the reconstruction error
between weeks 5 ands |19 is consistent across

all studies
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Autoencoder reconstruction study
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Summary of reconstruction analysis

* Reconstruction error highlights significant change in the RF state between weeks |5 and 20
* Fractional change in I/Q components show a change, but it is comparatively small
* SVD metric does not show clear picture

* Suggestive that change in output current caused by RF
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0.04 ] | 5wk trn: val
40 1.75 A
{1 | 5wk trn: tst

150 1 w10 wk trn: val

1.25 1 Bl 10 wk trn: tst |

0.02

0.00 ¥ 1.00

SVD Metric

0.75 1
—0.02 A ]

fractional change
rms reconstruction error

0.50 1

—-0.04 1

0.25 -_.9:

BN in phase | quadrature‘ i ‘

] 30 0.00 +

6 8 10 12 14 16 18 20 6 8 10 12 14 16 18 20 5 10 15 20
time [weeks] time [weeks] time [Weeks]

/A\ radiasoft SLAC ML Seminar 22/36



Detecting faulty magnet power supplies in the APS

* Can we predict if a fault will occur?

* If yes, can we predict which magnet will fault

https://www.energy.gov/sites/prod/files/2019/04/f62/Advanced-Photon-Source-Upgrade-Project.pdf
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Detecting faulty magnet power supplies in the APS

* Can we predict if a fault will occur?

* If yes, can we predict which magnet will fault

* Components of interest
* 1320 magnet power supplies
* 40 sectors ( each has A and B sections)
* A section: 4 horizontal correctors, 4 vertical correctors, 5 quads, and 4 sextupoles

* B type: 4 horizontal correctors, 4 vertical correctors, 5 quads, and 3 sextupoles

https://www.energy.gov/sites/prod/files/2019/04/f62/Advanced-Photon-Source-Upgrade-Project.pdf
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Detecting faulty magnet power supplies in the APS

* Time series data for 1320 magnets

* Power supply cap temperature

e Current

* Magnet temperature

* Reference data (blue)

* Test data (orange)

* Magnet failure occurs

* Data is clipped and does not include final minutes -129.79 ]

prior to magnet fault
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Detecting faulty magnet power supplies in the APS

* Time series data for 1320 magnets 2.8

* Power supply cap temperature

w
N
o

e Current

W
!\)
FoN

* Magnet temperature

cap temperature [C]
w w
!\) N
o N

31.8 1

. o fo . —— reference data
* Simplifications 3.6  test data
» Aggregate by sector: sum current across magnets ° ! el ¢ >

in a sector (80 inputs/outputs)

—-129.77 4
—— reference data

* Aggregate by magnet type in sectors: sum current - test data

across each magnet type in a sector (320
inputs/outputs) ~129.79 {
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* Consider magnet current or temperature ~129.80 1
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0 1 2 3 4 5
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Aggregating by Sector

* Reference data (left) used for training and validation and test data (right) with known and unknown
anomalies

* Some clear visual differences but datasets are qualitatively similar
* Differences between sectors are subtle at best, may be difficult to isolate anomalous sector
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Aggregating by Magnet Type in Sector

* Reference data (left) used for training and validation and test data (right) with known and
unknown anomalies

* Some clear visual differences but datasets are qualitatively similar
* Differences between magnet types and sectors are much more clear
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Autoencoder performance for two studies

e Prediction results for the validation data * Prediction results for the validation data
* Data aggregated by magnet type in a sector

* Data aggregated by sector
 Layers : 160, 120, 80, 60, 40, 30, 20, 10, 20, 30, 40,

i La)’erS: 60, 40, 20, I O, 8, 2, 8, I O, 20, 40, 60 60.80. 120. 160
b b y
* relu activation functions e relu activation functions
* Gaussian noise for regularization » Gaussian noise for regularization
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gt ".'.o ® ot e " . “'f o o-c'. . o ’
0.9999{ . = : : 0.995 -
N . ‘® 0.990
0.9998
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parameter parameter
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Reconstruction of reference data and test data (by sector)

* Train autoencoder on reference data
(no faults)

* Set reconstruction error threshold based
on reference data performance

o
w

o
N

o
[

 Reconstruction threshold of 0.0l results
in 0.05% of the reference data being
flagged as faulty

rms reconstruction error
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30 1 ‘
|
|
|
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o
o

* Note the actual time when the magnet
faults is not in the dataset

[ =

* Reconstruction threshold of 0.01 results
in 41% of test data being flagged as faulty
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Reconstruction of reference data and test data (by type in sector)

* Train autoencoder on reference data .y
(no faults) % 100 1
c
* Set reconstruction error threshold based g 801
on reference data performance 5 601
c
* Reconstruction threshold of 0.1 results in S 401
0.04% of the reference data being flagged 2 20
as faulty - sl ..JL..L.JLIA X i_l...h....l

0 10000 20000 30000 40000
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= 400
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Reconstruction tests for magnet temperature

* Reference data (left) used for training and validation and test data (right) with known and
unknown anomalies

* Some clear visual differences but datasets are qualitatively similar
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Reconstruction of reference data and test data (by type in sector)

Train autoencoder on reference data

(no faults)

Set reconstruction error threshold based

on reference data performance

Reconstruction threshold of 0.1 results in
0.2% of the reference data being flagged

as faulty
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Reconstruction of reference data and test data (by type in sector)

* Train autoencoder on reference data
(no faults)

* Set reconstruction error threshold based
on reference data performance

15 4

10

rms reconstruction error

 Reconstruction threshold of 0.1 results in

0.2% of the reference data being flagged 0]

as faulty 0 10000 20000 30000 40000
sample number

* Test autoencoder on fault data 100

* Note the actual time when the magnet
faults is not in the dataset

80 1

* Reconstruction threshold of 0.1 results in
27% of test data being flagged as faulty

rms reconstruction error

- 0 20000 40000 60000 80000 100000
sample number
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Conclusions

e Fermilab LINAC:

* Latent space analysis suggestive that RF parameters are correlated with change in current
* Reconstruction analysis also suggestive that RF parameters are correlated with change in current
* Latent space and reconstruction analysis outperform conventional methods for analyzing RF data

* Reconstruction analysis and latent space analysis are robust to perturbations in architecture and initial weights

* APS Storage Ring

* Autoencoder successfully identified anomalous data on the whole
* Sector current (41% / 0.05%)
* Magnet type in sector current (30% / 0.04%)
* Magnet type in sector temperature (25% / 0.2%)

* ldentifying faulty sector from data aggregated by sector was unsuccessful
* Continue to explore temperature data and more detailed current data

* Combine approaches

A\ radia SLAC ML Seminar 35/36



Disclaimer

This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government nor any agency thereof, nor
any of their employees, makes any warranty, express or implied, or assumes any legal liability
or responsibility for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe privately owned
rights. Reference herein to any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United States Government or any agency
thereof. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof.
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