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FEL Tuning at LCLS

• The FEL beam is focused and tuned using quadrupole 

magnets located along the beam line.

• Tuning has historically been done by hand by machine 

operators and is very time consuming.

• Our approach: treat FEL tuning as an optimization problem.
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FEL Tuning at LCLS

• The FEL beam is focused and tuned using quadrupole 

magnets located along the beam line.

• Tuning has historically been done by hand by machine 

operators and is very time consuming.

• Our approach: treat FEL tuning as an optimization problem.
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2015 Tuning Data

• Data mining from the 2015 quad settings allows us to 

collect data on tuning events.

• We filter for non-parasitic tuning events, removing e.g. 

events like:

LTU Quads



5

2015 Tuning Data

• Data mining from the 2015 quad settings allows us to 

collect data on tuning events.

• We filter for non-parasitic tuning events (below).

• These account for 200+ hours of machine time in 2015.

LI26 Quads
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Outline

• Optimization

• Bayesian optimization

• Gaussian processes

• Integration into LCLS

• Preliminary results
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Review: Optimization

• Optimization in brief: find 𝑥 that gives the best 𝑦

• Requires evaluation of the objective function
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Review: Optimization

• Many types of optimization algorithms

• Gradient methods



9

Review: Optimization

• Many types of optimization algorithms

• Simulated annealing
𝑇
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Review: Optimization

• Many types of optimization algorithms

• Simulated annealing
𝑇
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Review: Optimization

• Many types of optimization algorithms

• Genetic algorithms

https://commons.wikimedia.org/wiki/File:St_5-xband-antenna.jpg
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Review: Optimization

What do we want from an optimizer?

• Speed

• Capability of handling noise

• Interpretability
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Review: Optimization

What do we want from an optimizer?

• Speed

• Capability of handling noise

• Interpretability

Bayesian optimization!



14

Bayesian optimization: High-level overview

Machine’s perspective:

Optimizer
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Bayesian optimization: High-level overview

Machine’s perspective:

Optimizer

𝑥𝑡
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Bayesian optimization: Mid-level overview

Optimizer’s perspective:

MachineModel𝑡−1
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Bayesian optimization: Mid-level overview

Optimizer’s perspective:

Model𝑡−1 Machine

𝑦𝑡−1
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Bayesian optimization: Mid-level overview

Optimizer’s perspective:

Machine

𝑦𝑡−1

Model𝑡−1

(𝑥𝑡−1, 𝑦𝑡−1)
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Bayesian optimization: Mid-level overview

Optimizer’s perspective:

Machine

𝑦𝑡−1(𝑥𝑡−1, 𝑦𝑡−1)

Model𝑡−1

Updating…
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Bayesian optimization: Mid-level overview

Optimizer’s perspective:

MachineModel𝑡
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Bayesian optimization: Mid-level overview

Optimizer’s perspective:

MachineModel𝑡

(𝑥𝑡,  𝑦𝑡)

Acquisition
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Bayesian optimization: Mid-level overview

Optimizer’s perspective:

MachineModel𝑡

(𝑥𝑡,  𝑦𝑡)
𝑦𝑡



30

Bayesian optimization: Details

The optimizer is fully defined by its:

• Model

• Acquisition function
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Model: High-level

• The model should be a mapping from parameter space 

into probability distributions.

• For us, the model gives a probability distribution over 

pulse energies for each possible set of quad strengths.

𝑦

𝑃 𝑦
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Gaussian processes

• A Gaussian process (GP) is a nonparametric model that 

predicts a normal distribution at each point.

• The shape of the distribution is calculated by inference 

over training data:

𝑃 𝑦𝑛𝑒𝑤 𝑥𝑛𝑒𝑤 , 𝑋𝑡𝑟𝑎𝑖𝑛, 𝑌𝑡𝑟𝑎𝑖𝑛 ~ 𝒩(𝜇 𝑥 , 𝜎 𝑥 )
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GP Covariance Functions

A GP is fully defined by its:

• Prior mean function

• Covariance function

• Training data

A covariance function is essentially a similarity measure 

between points in parameter space: 𝐾: ℝ𝑑 × ℝ𝑑→ ℝ
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GP Covariance Functions

• Covariance functions encode the type of functions we 

think are likely, i.e. the way the data ‘should look’.

• A common choice is the squared exponential kernel:

𝐾 𝑥1, 𝑥2 = 𝜃𝑒
−

𝑥1−𝑥2
⊤ 𝑥1−𝑥2

2ℓ2

http://pythonhosted.org/infpy/gps.html
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GP Covariance Functions

• Covariance functions encode the type of functions we 

think are likely, i.e. the way the data ‘should look’.

• We use a slight variation:

𝐾 𝑥1, 𝑥2 = 𝜃𝑒− 𝑥1−𝑥2
⊤Λ−1 𝑥1−𝑥2

http://pythonhosted.org/infpy/gps.html

𝐾 𝑥1, 𝑥2 = 𝜃𝑒
−

𝑥1−𝑥2
⊤ 𝑥1−𝑥2

2ℓ2
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Other Covariance Functions

Covariance functions can encode complex beliefs about the 

type of functions that are likely:

http://pythonhosted.org/infpy/gps.html
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Acquisition function

• Acquisition functions define exploration behavior.

• We use expected improvement (EI):

𝐼 𝑥 = max 𝑓 𝑥 − 𝑦∗, 0 ,

EI 𝑥 = 𝐸 𝐼 𝑥 =  𝑦∗

∞
𝑦 − 𝑦∗ 𝑃 𝑦|𝑥 𝑑𝑦
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Acquisition function

• Acquisition functions define exploration behavior.

• We use expected improvement (EI):

𝐼 𝑥 = max 𝑓 𝑥 − 𝑦∗, 0 ,

EI 𝑥 = 𝐸 𝐼 𝑥 =  𝑦∗

∞
𝑦 − 𝑦∗ 𝑃 𝑦|𝑥 𝑑𝑦

Easy to compute for a 

Gaussian distribution
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Example: Bayesian optimization
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Example: Bayesian optimization

Acquisition point
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Example: Bayesian optimization

Acquisition point
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Integration into LCLS

• We use the following covariance function:

• The hyperparameters 𝜃 and Λ are calculated from historical 

data, e.g. historical deviation of a certain quad’s settings.

𝐾 𝑥1, 𝑥2 = 𝜃𝑒− 𝑥1−𝑥2
⊤Λ−1 𝑥1−𝑥2

• Via the Ocelot GUI (right), 

arbitrary sets of quads can 

be selected and optimized. 
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Analysis

• The GP’s full model can be observed for analysis and 

debugging, along with the acquisition function:

Observations Model Expected Improvement
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Analysis

Observations Model Expected Improvement

• The GP’s full model can be observed for analysis and 

debugging, along with the acquisition function:



53

Results

• Early results are promising, and the optimizer can perform well 

optimizing 12 quads at once:

• Man vs. Machine tests pending…
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Future Work

• We are not incorporating any physics into the optimizer!

• We want to use physical models and our knowledge 

about the system to augment the optimization procedure.

• One possibility is marginalizing over hidden variables:

• We could also work directly with physical parameters, 

e.g. 𝛼 and 𝛽, which describe the shape of the beam.

𝑃 𝑦|𝑥, 𝑋, 𝑌 =  𝑃 𝑦|𝑥, 𝑋, 𝑌, 𝑧 𝑃 𝑧 𝑋, 𝑌 𝑑𝑧


