Bayesian Optimization at LCLS

Using Gaussian Processes for Automated Tuning

Mitchell Mclntire
mcintire@slac.stanford.edu



mailto:mcintire@slac.stanford.edu

FEL Tuning at LCLS

 The FEL beam is focused and tuned using quadrupole
magnets located along the beam line.

« Tuning has historically been done by hand by machine
operators and is very time consuming.

« Qur approach: treat FEL tuning as an optimization problem.
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FEL Tuning at LCLS
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 The FEL beam is focused and tuned using quadrupole
magnets located along the beam line.

« Tuning has historically been done by hand by machine
operators and is very time consuming.

« Qur approach: treat FEL tuning as an optimization problem.
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2015 Tuning Data

- Data mining from the 2015 quad settings allows us to
collect data on tuning events.

- We filter for non-parasitic tuning events, removing e.g.
events like:
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2015 Tuning Data

- Data mining from the 2015 quad settings allows us to
collect data on tuning events.

« We filter for non-parasitic tuning events (below).

* These account for 200+ hours of machine time in 2015.
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Review: Optimization

* Optimization in brief: find x that gives the best y
« Requires evaluation of the objective function
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Review: Optimization

* Many types of optimization algorithms

* Gradient methods
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Review: Optimization

* Many types of optimization algorithms
* Simulated annealing




Review: Optimization

* Many types of optimization algorithms
* Simulated annealing
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Review: Optimization
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« Many types of optimization algorithms
* Genetic algorithms

https://commons.wikimedia.org/wiki/File:St_5-xband-antenna.jpg
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Review: Optimization

What do we want from an optimizer?
* Speed
* Capalbility of handling noise
° Interpretability
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Review: Optimization

What do we want from an optimizer?
* Speed
* Capalbility of handling noise
° Interpretability

Bayesian optimization!
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Bayesian optimization: High-level overview

Machine’s perspective:

Optimizer o—

14



Bayesian optimization: High-level overview

Machine’s perspective:
Optimizer — -~ .
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Bayesian optimization: High-level overview
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Bayesian optimization: High-level overview

Machine’s perspective:
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Bayesian optimization: High-level overview
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Bayesian optimization:

High-level overview

Machine’s perspective:
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Bayesian optimization: Mid-level overview

Optimizer’s perspective:

Machine
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Bayesian optimization: Mid-level overview

Optimizer’s perspective:

YVt-1

Machine
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Bayesian optimization: Mid-level overview

Optimizer’s perspective:

(th \
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Bayesian optimization: Mid-level overview

Optimizer’s perspective:

(Xt—1,Ye-1)

Updating...

YVt-1

Machine

23



Bayesian optimization: Mid-level overview

Optimizer’s perspective:

Machine
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Bayesian optimization: Mid-level overview

Optimizer’s perspective:

(xe, Yt)

Acquisition

Machine
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Bayesian optimization: Mid-level overview

Optimizer’s perspective:

(xe, Yt)

Machine
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Bayesian optimization: Mid-level overview

Optimizer’s perspective:

(xe, Yt)

Machine
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Bayesian optimization: Mid-level overview

Optimizer’s perspective:

(xe, Yt)

Machine
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Bayesian optimization: Mid-level overview

Optimizer’s perspective:

(xe, Yt)

Yt

Machine

29



Bayesian optimization: Details

The optimizer is fully defined by its:

° Model
* Acquisition function
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Model: High-level
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The model should be a mapping from parameter space
Into probability distributions.

* For us, the model gives a probability distribution over
pulse energies for each possible set of quad strengths.

P(y)
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Gaussian processes
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* A Gaussian process (GP) is a nonparametric model that
predicts a normal distribution at each point.

» The shape of the distribution is calculated by inference
over training data:

P(ynew |xneWr Xtrain Ytrain) ~ N(.u(x); O'(X))
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GP Covariance Functions

A GP is fully defined by its:

* Prior mean function
* Covariance function
° Training data

A covariance function is essentially a similarity measure
between points in parameter space: K: R? x R%—> R
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GP Covariance Functions

« Covariance functions encode the type of functions we
think are likely, i.e. the way the data ‘should look’.

« A common choice is the squared exponential kernel:

_ (x1—x2) T (x1—x2)
K(xq,x,) = 0Oe 242

Squared exponential Squared exponential (long length scale)
4
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http://pythonhosted.org/infpy/gps.html
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GP Covariance Functions

« Covariance functions encode the type of functions we
think are likely, i.e. the way the data ‘should look’.

« We use a slight variation:

—x )T (-
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K(xy,x;) = Oe

Squared exponential Squared exponential (long length scale)
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http://pythonhosted.org/infpy/gps.html
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Other Covariance Functions

Covariance functions can encode complex beliefs about the
type of functions that are likely:

Matern32 Periodic

http://pythonhosted.org/infpy/gps.html %



Acquisition function

« Acquisition functions define exploration behavior.
* We use expected improvement (El):

1(x) = max(f (x) — y*, 0),
EI(x) = E[1()] = [[/(y = y)P(y|x)dy
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Acquisition function

« Acquisition functions define exploration behavior.
* We use expected improvement (El):

1(x) = max(f (x) — y*, 0),
EI(x) = E[1()] = [[/(y = y)P(y|x)dy

Easy to compute for a
Gaussian distribution
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Example: Bayesian optimization
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Example: Bayesian optimization

Acquisition point
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Example: Bayesian optimization

Acquisition point
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Example: Bayesian optimization

Acquisition point
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Example: Bayesian optimization

Acquisition point
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Example: Bayesian optimization

Acquisition point
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Example: Bayesian optimization

Acquisition point
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Example: Bayesian optimization

Acquisition point
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Example: Bayesian optimization
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Example: Bayesian optimization
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Example: Bayesian optimization
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Integration into LCLS
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* We use the following covariance function:

K(xq,x5) = Qe—(x1—xz)TA_1(x1—x2)

« The hyperparameters 8 and A are calculated from historical
data, e.g. historical deviation of a certain quad’s settings.

« Via the Ocelot GUI (right),
arbitrary sets of quads can
be selected and optimized.
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Analysis
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« The GP’s full model can be observed for analysis and
debugging, along with the acquisition function:

Observations Model Expected Improvement

: : . 2.74 2.74
0.054
1.50
° 0.048
& 2.96 1.35 -2.96
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o
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°
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. . . -3.83 . . . -3.83 0.000
3.9 4.0 4.1 3.59 3.69 3.8 3.9 4.0 4.11 3.59 3.69 3.8 3.9 4.0 4.11
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Analysis
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« The GP’s full model can be observed for analysis and
debugging, along with the acquisition function:

Observations

Model

Expected Improvement

0.072
0.064
0.056
40.048
0.040
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Results

- Early results are promising, and the optimizer can perform well
optimizing 12 quads at once:

35 8.2 keV GP optjmization, 4-6 deyice/s;an
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* Man vs. Machine tests pending...
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Future Work
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« We are not incorporating any physics into the optimizer!

« We want to use physical models and our knowledge
about the system to augment the optimization procedure.

* One possibility is marginalizing over hidden variables:

P(y|x,X,Y) = JP(ylx,X,Y,Z)P(le,Y)dZ

« We could also work directly with physical parameters,
e.g. a and B, which describe the shape of the beam.
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