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Machine Learning

Use data samples
to construct model
that minimises cost

on unseen data.
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Kernel methods
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Deep learning
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Qcircuits as trainable, composable & differentiable models.

PHYSICAL CIRCUIT
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Farhi & Neven 1802.06002, Schuld et al. 1804.00633




Qcircuits as trainable, composable & differentiable models.

a. Computing the expectation b. Computing a partial derivative
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Guerreschi & Smelyanskiy 1701.01450, Mitarai et al. 1803.00745, Schuld et al. 1811.11184




Qcircuits as trainable, composable & differentiable models.

pennylane
torch

torch
torch.autograd Variable

torch.autograd Variable

data = torch.tensor([(0., 0.), (8.1, 8.1), (8.2, 0.2)]) data = [(0., 0.), (0.1, 0.1), (8.2, 0.2)]

dev = device( =2)

)

model(phi, x= 3
x*phi. circuit(phi, x=i D3
templates.AngleEmbedding (features=[x],
templates.BasicEntanglerLayers(
expval (PauliZ( =[11))

Tloss(a, b): Tloss(a, b):
torch.abs(a - b) *x 2 torch.abs(a - b) ** 2
av_loss(phi): av_loss(phi):
c=0 c=0
X, ¥ data: X, ¥ data:
¢ += loss(model(phi, x=x), y) ¢ += loss(circuit(phi, x=x), y)
c

c

phi_ = Variable(torch. tensor(0.1), phi_ = Variable(torch.tensor([[0.1, 8.2],[-6.5, 08.1]1),
opt = torch.optin.Adan([phi_], 1r=08.82) opt = torch.optin.Adan([phi_], 1r=0.82)

i e(5): i e(5):

1 = av_loss(phi_) 1 = av_loss(phi_)

1.backward() 1.backward()

opt.step() opt.step()

pennylane.ai




We can train quantum circuits like neural nets.
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Quantum circuits are kernel methods.

PHYSICAL CIRCUIT

01

Sz

10)

. measure-
encoding ment

MATHEMATICAL DESCRIPTION

M(0)

10

si5(2)

1
0

Schuld & Killoran 1803.07128, Havlicek et al. 1804.11326, Lloyd et al. 2001.03622




Quantum circuits are kernel methods.

Lloyd et al. 2001.03622




Quantum circuits are kernel methods.
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OML and HEP



rour of current work
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Abstract. Machine learning has been used in high energy physics since a long time.
primarily at the analysis level with supervised clissifieation. Quantum computing

was postulated in the early 1980s as way to perform computations that would not
be tractable with a classieal computer. With the advent of noisy intermediate-scale
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quanium computing devices, more quantum algorithms are being developed with the

im at exploiting the capacity of the hardware for machine learning applications. An
interesting question is whether there are ways to combine quantum machine learning
with High Energy Physics. This paper reviews the first gencration of ideas that use
quantum machine learning on problems in high energy physics and provide an outlook
on future applications.
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Guan, Perdue, Pesah, Schuld, Terashi, Vallecorsa, Vlimant,
Quantum Machine Learning in High Energy Physics, arxiv:2005.08582




A flavour of current work

Task: Distinguish pair of photons created by Higgs decay from uncorrelated background
events

Features: 8 measurements taken on the di-photon system

Quantum technology: Quantum annealer (hardware)

Quantum algorithm: Use QUBO to find best (0/1) weights to combine 36 simple ML
models (“weak learners”)

Mott, Job, Vlimant, Lidar, & Spiropulu (2017), Nature, 550(7676), 375-379




A flavour of current work

Task: Particle track reconstruction
Features: Locations of hits + corresponding particles (TrackML challenge)

Quantum technology: Qubit-based quantum circuits (simulator)

Quantum algorithm: Represent hits as “tree-tensor network” quantum circuit and train
gates in the network

Tiiystiz, Carminati, Demirkoz, Dobos, Fracas, Novotny, ... & Vlimant (2020), arXiv:2003.08126




A flavour of current work

Task: Higgs coupling to top quark pairs (ttH)
Features: 45 input events (+ PCA)

Quantum technology: Qubit-based quantum circuits (simulator + hardware)
Quantum algorithm: Variational circuit (SVM interpretation)

Chan, Guan, Sun, Wang, Wu, Zhou, ... & Di Meglio (2019), PoS, LeptonPhoton2019, 49




A flavour of current work

Task: Classification of signal predicted in Supersymmetry
Features: SUSY data set in the UC Irvine Machine Learning Repositiory

Quantum technology: Qubit-based quantum circuits (simulator + hardware)
Quantum algorithm: Variational circuit (NN interpretation)

Terashi, Kaneda, Kishimoto, Saito, Sawada, & Tanaka (2020), arXiv:2002.09935




A critical comment



Why would you use QML in HEP?

» In ca 40 years’ time you want to solve a linear algebra problem
» You have Fourier signals somewhere

> You can do information processing on your physical objects directly




Why would you do that?
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Thank you!
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