Machine Learning with Quantum Computers

Maria Schuld

Xanadu and University of KwaZulu-Natal

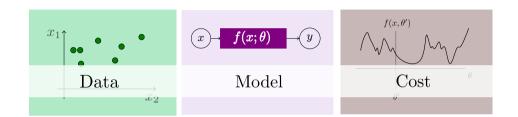
SLAC Seminar, December 2020

Agenda

- Some context on QML
- Attempts to unite QML and HEP
- A critical comment

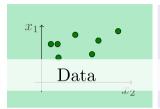
QML

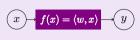
Machine Learning



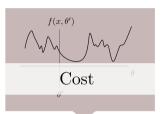
Use data samples to construct model that minimises cost on unseen data.

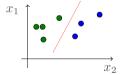
Linear models



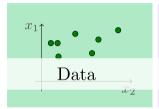


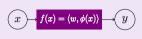
Model



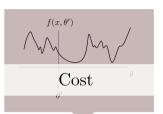


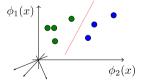
Kernel methods



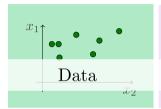


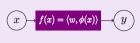
Model



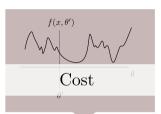


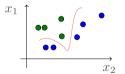
Kernel methods



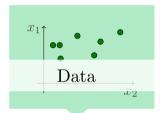


Model

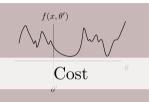




Deep learning

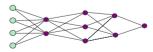


Model



 Big

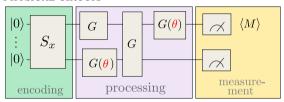
trainable, composable & differentiable



- gradient descent
- \bullet high performance hardware
- \bullet special purpose software

Qcircuits as trainable, composable & differentiable models.

PHYSICAL CIRCUIT

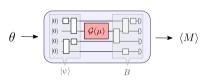


MATHEMATICAL DESCRIPTION

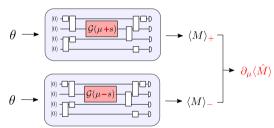
Farhi & Neven 1802.06002, Schuld et al. 1804.00633

Qcircuits as trainable, composable & differentiable models.

a. Computing the expectation



b. Computing a partial derivative



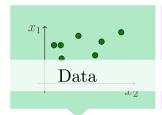
Guerreschi & Smelyanskiy 1701.01450, Mitarai et al. 1803.00745, Schuld et al. 1811.11184

Qcircuits as trainable, composable & differentiable models.

```
from pennylane import *
                                                               import torch
from torch.autograd import Variable
                                                              from torch.autograd import Variable
data = torch.tensor([(0., 0.), (0.1, 0.1), (0.2, 0.2)]) 5
                                                              data = [(0., 0.), (0.1, 0.1), (0.2, 0.2)]
                                                              dev = device('default.gubit', wires=2)
                                                              Gunode(dev. interface='torch')
def model(phi, x=None):
                                                              def circuit(phi. x=None):
    return x*nhi
                                                                  templates.AngleEmbedding(features=[x], wires=[8])
                                                                  templates.BasicEntanglerLayers(weights=phi, wires=[0, 1])
                                                                  return expval(PauliZ(wires=[1]))
def loss(a, b):
                                                              def loss(a, b):
                                                                  return torch.abs(a - b) ** 2
    return torch.abs(a - b) ** 2
                                                              def av_loss(phi):
def av loss(phi):
    for x, y in data:
                                                                  for x, y in data:
                                                                     c += loss(circuit(phi, x=x), v)
       c += loss(model(phi, x=x), y)
phi = Variable(torch.tensor(0.1), requires_grad=True) 24
                                                              phi = Variable(torch.tensor([[0.1, 0.2],[-0.5, 0.1]]), requires grad=True)
                                                              opt = torch.optim.Adam([phi ], lr=0.02)
opt = torch.optim.Adam([phi_], lr=0.02)
    l = av_loss(phi_)
                                                                  1 = av loss(phi )
                                                                  l.backward()
    1.backward()
                                                                  opt.step()
    ont.sten()
```

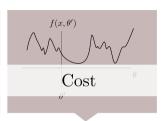
pennylane.ai

We can train quantum circuits like neural nets.



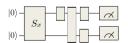


Model



 Big

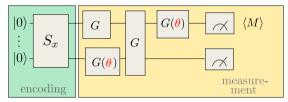
trainable, composable & differentiable



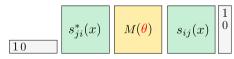
- ullet gradient descent
- \bullet high performance hardware
- \blacksquare special purpose software

Quantum circuits are kernel methods.

PHYSICAL CIRCUIT

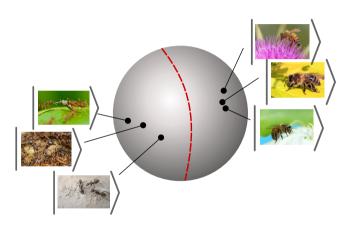


MATHEMATICAL DESCRIPTION



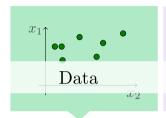
Schuld & Killoran 1803.07128, Havlicek et al. 1804.11326, Lloyd et al. 2001.03622

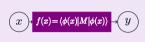
Quantum circuits are kernel methods.



Lloyd et al. 2001.03622

Quantum circuits are kernel methods.

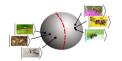




Model

Big

trainable, composable & differentiable



QML and HEP

FERMILAB-PUB-20-184-QIS

Quantum Machine Learning in High Energy Physics

Wen Guan, Gabriel Perdue, Arthur Pesah, Maria Schuld, Koji Terashi, Sofia Vallecorsa, Jean-Roch Vlimant

E-mail: jvlimant@caltech.edu

May 2020

Abstract. Machine learning has been used in high energy physics since a long time, perimarily at the analysis level with supervised classification. Quantum computing was postulated in the early 1980s as way to perform computations that would not be tractable with a classical computer. With the advent of noisy intermediate-scale quantum computing devices, more quantum algorithms are being developed with the aim at exploiting the capacity of the hardware for machine learning applications. An interesting question is whether there are ways to combine quantum machine learning with High Energy Physics. This paper reviews the first generation of ideas that use quantum machine learning on problems in high energy physics and provide an outlook on future anolisations.

Guan, Perdue, Pesah, Schuld, Terashi, Vallecorsa, Vlimant, Quantum Machine Learning in High Energy Physics, arxiv:2005.08582

Task: Distinguish pair of photons created by Higgs decay from uncorrelated background events

Features: 8 measurements taken on the di-photon system **Quantum technology:** Quantum annealer (hardware)

Quantum algorithm: Use QUBO to find best (0/1) weights to combine 36 simple ML

models ("weak learners")

Task: Particle track reconstruction

Features: Locations of hits + corresponding particles (TrackML challenge)

 ${\bf Quantum\ technology:}\ {\it Qubit-based\ quantum\ circuits\ (simulator)}$

Quantum algorithm: Represent hits as "tree-tensor network" quantum circuit and train

gates in the network

Task: *Higgs coupling to top quark pairs (ttH)*

Features: 45 input events (+ PCA)

Quantum technology: *Qubit-based quantum circuits (simulator + hardware)*

Quantum algorithm: Variational circuit (SVM interpretation)

Task: Classification of signal predicted in Supersymmetry

Features: SUSY data set in the UC Irvine Machine Learning Repositiory

Quantum technology: *Qubit-based quantum circuits (simulator + hardware)*

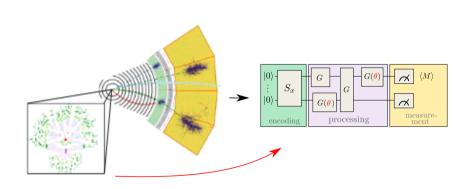
Quantum algorithm: Variational circuit (NN interpretation)

A critical comment

Why would you use QML in HEP?

- ▶ In ca 40 years' time you want to solve a linear algebra problem
- ▶ You have Fourier signals somewhere
- ▶ You can do information processing on your physical objects directly

Why would you do that?



Thank you!

www.pennylane.ai www.xanadu.ai @XanaduAI