

Online Multi-Objective Optimization Using Gaussian Processes

Ryan Roussel, Adi Hanuka, Auralee Edelen, Luis Hidalgo

Handing off Control/Tuning to the Machines

What do we want from a fully (or almost) autonomous system for controlling an accelerator?

- Able to optimize towards multiple objectives at once
- Satisfy multiple operating **constraints**
- Quickly find reasonable solutions in extremely high dimensional systems
 - (> 30D, < 1 hr tuning time)
- Handle parameter/observation noise and drift
- Learn from past experiments and simulations

Photoinjector Optimization

For online photoinjector optimization we wish to simultaneously:

- Minimize emittances (3x)
- Minimize bunch sizes (3x)
- Minimize energy spread (1x)

7 objectives

Tuning knobs:

- Solenoid strengths (2x)
- RF Amplitudes (2x)
- RF Phases (2x)

6 input parameters

Edelen, Auralee, et al. PRAB 23.4 (2020): 044601.

Normal Accelerator Optimization

Normal Optimization Algorithm

Multiple Objectives: Pareto Front

Genetic Optimization of PF

NSGA-II

https://www.strong.io/blog/evolutionary-optimization

175 generations, 100 individuals

At 5 seconds per observation, optimization time > 24 hrs

Hybrid Genetic Optimization at SLAC

NSGA-II + Gaussian processes to evaluate GA created candidates

Song, Minghao, et al. NIMA (2020): 164273.

Iterated neural network optimized by NSGA-II to propose ideal points

Large improvements in optimization speedup, but both methods rely on batch observations, suited best for parallel optimization

Edelen, Auralee, et al. PRAB 23.4 (2020): 044601.

Accelerator Optimization w/Surrogates

Normal Optimization Algorithm

Can we do the same optimization with **less observations?**Need an **efficient** method!

Accelerator Optimization w/Surrogates

Normal Optimization Algorithm

Bayesian Optimization Algorithm

Gaussian Processes as a Surrogate

f(x)

$$k(x, x_n) = \sigma e^{-\frac{|x - x_n|^2}{2\lambda^2}}$$

Acquisition Function

Bayesian Optimization Algorithm

Benefits:

- Specify tradeoff between exploration and exploitation
- Inherently improves model accuracy in regions of interest
- Enables parallel optimization strategies

 \mathcal{X}

Extension to Multiple Objective Optimization

We wish to find the set of **Pareto-optimal points** in objective space by **maximizing** the contained **Pareto front hypervolume**

- Each objective has a GP surrogate model
- Using the surrogates we calculate the Expected Hypervolume Improvement (EHVI) as a function of the input
- Find a point that maximizes the EHVI and use as our next measurement point

This allows us to find the Pareto front w/ a small number of measurements unlike genetic or swarm optimization methods

$$\alpha_{EHVI}(\boldsymbol{\mu}, \boldsymbol{\sigma}, \boldsymbol{\mathcal{P}}, \boldsymbol{r}) := \int_{\mathbb{R}^P} HVI(\boldsymbol{\mathcal{P}}, \boldsymbol{y}, \boldsymbol{r}) \cdot \boldsymbol{\xi}_{\mu, \boldsymbol{\sigma}}(\boldsymbol{y}) d\boldsymbol{y}$$

Yang, Kaifeng, et al. Swarm and evolutionary computation 44 (2019): 945-95

Two Objective Example Optimization

Red cross – observation points Analytical Pareto front

Alternative Hypervolume Improvement Metrics

Large number of objectives -> too expensive for EHVI calculation ~ O(N^D)

While, Lyndon, Lucas Bradstreet, and Luigi Barone. IEEE Transactions on Evolutionary Computation 16.1 (2011): 86-95.

Photoinjector Optimization

For online photoinjector optimization we wish to simultaneously:

- Minimize emittances (3x)
- Minimize bunch sizes (3x)
- Minimize energy spread (1x)

7 objectives

Tuning knobs:

- Solenoid strengths (2x)
- RF Amplitudes (2x)
- RF Phases (2x)

6 input parameters

Edelen, Auralee, et al. PRAB 23.4 (2020): 044601.

Simulated Photoinjector Optimization

OPAL simulation of AWA photoinjector 6 mins on HPC cluster

NN surrogate of AWA photoinjector < 1 sec on a laptop

Edelen, Auralee, et al. PRAB 23.4 (2020): 044601.

Simulated Photoinjector Optimization

- 10 optimization runs
- 20 initial points each
- Pk hypervolume ~ 90 in < 500 steps (NSGA-II ~ 17.5k) factor of 35x speedup, tuned in < 45 mins!

Adding Objective Preferences

Preferences: only calculate HV inside objective region

$$\alpha_{TUCB-HVI}(\boldsymbol{\mu}, \boldsymbol{\sigma}, \boldsymbol{\mathcal{P}}, \boldsymbol{\beta}, \boldsymbol{A}, \boldsymbol{B}) := \begin{cases} \text{HVI}(\boldsymbol{\mathcal{P}}, \boldsymbol{y}, \boldsymbol{B}) \ \boldsymbol{y} \in \boldsymbol{\mathcal{T}} \\ \text{otherwise} \end{cases}$$

Adding Constraints

Constraints: model probability that a constraint is satisfied

Adding Preferences vs. Constraints

Control

Preference: dE < 0.52 MeV

Constraint: dE < 0.52 MeV

Smooth Exploration (AWA)

No modification

Localized acquisition function

$$\widetilde{\alpha}(\boldsymbol{x}, \boldsymbol{x}_0) = \alpha(\boldsymbol{x}) \exp \left[-\frac{1}{2} (\boldsymbol{x} - \boldsymbol{x}_0)^T \boldsymbol{\Sigma} (\boldsymbol{x} - \boldsymbol{x}_0) \right]$$

Gaussian Processes for Accelerator Optimization

Bayesian Optimization Algorithm

Gaussian Processes for Accelerator Optimization

Bayesian Optimization Algorithm

Improve predictive accuracy

- multi-fidelity simulation results
- neural network engine
- manifold GP

Expand capabilities

- Include time dependent drift and noise

Future work

Improve optimization speed

- seeded swarm optimization
- hierarchical Bayesian optimization

Conclusion

Bayesian Optimization Algorithm

Experimental demonstration coming soon!

