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Outline

Discuss efforts on the MicroBooNE 
experiment to use convolutional neural 
networks to improve physics analysis 

● What are we trying to solve with CNNs? -- 
and why?

● From physics problem to ML problem
● Current Analysis Effort
● Developments

“Eyes” of the MicroBooNE detector -- a 
time-projection chamber,-- before installation
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The MicroBooNE Experiment in a nutshell

“An accelerator neutrino oscillation   
    experiment”
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Neutrinos

“An accelerator neutrino oscillation   
    experiment”
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Neutrinos

Neutrinos are a type of the fundamental 
particle

Key stats:
● No electric charge
● Interacts only via weak force and gravity
● Very, very small mass: ~8 orders smaller than 

next heaviest particle!
● Come in three “flavors” -- based on what other 

particle they make during certain interactions

The Three “FLAVORS”

electron

muon

tau
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Life as Neutrino Physicist

No electric charge 
=> observe indirectly

Only Weak Force
=> rare process

Flavor related to particle produced 
during certain interaction 
=> key to identifying type 𝝂e electron
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Neutrino Source

“An accelerator neutrino oscillation   
    experiment”

MicroBooNE uses a high-intensity 
beam of neutrinos made at 
Fermi National Accelerator Lab
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Neutrino Oscillations

“An accelerator neutrino oscillation   
    experiment”

Goal is to look for 
evidence of Neutrino 
Oscillations

Flavor detected 
oscillations over distance 
traveled

Neutrino created in certain flavor ...

can later be 
detected in other flavor ...

or later in original ...
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Neutrino Oscillations

Anomalies in other past 
experiments can be 
interpreted as oscillations 
occurring because of new 
flavor or neutrino

Exciting if true!

?
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MicroBooNE setup

 

Beam created as almost 
entirely muon neutrinos

Given distance traveled and 
energy of neutrinos, 
Should be the case @ detector
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MicroBooNE setup

But if consistent with past
Anomaly (measured in same 
beam line)

We will see excess of 
electron neutrinos 
(at low energies)
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MicroBooNE setup

Our target measurement, then, is the energy of 
neutrinos and the counts of the different flavors

The detector, a liquid argon time projection chamber, 
provides high resolution images with which we can extract 
these measurements
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Capturing Images of Neutrino Interactions
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Capturing Images of Neutrino Interactions

A neutrino 
(dashed grey) 
passes into the 
detector and 
interacts 
producing 
charged particles 
(solid yellow)

14



Capturing Images of Neutrino Interactions

Charged particles 
produce ionization 
electrons along 
path

(neutrino neutral 
and leaves no 
directy signature)
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Capturing Images of Neutrino Interactions

Light also produced by 
charged particles. 

Travels to sensors on 
short (ns) timescales

Light provides timing 
for event -- and course 
position info.

GPU-accelerated photon simulation, showing final 
location of photons

Red: hit photo-sensor (PMT)
Blue: absorbed on surface

Green: abosrbed in bulk
White-lines: particle trajectories 
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Capturing Images of Neutrino Interactions

Ionization electrons 
drift towards 
wireplanes
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Capturing Images of Neutrino Interactions

Ionization induce 
detectable signals 
on nearby wires
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Capturing Images of Neutrino Interactions
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Capturing Images of Neutrino Interactions

In principle: enough 
information for 3D 
reconstruction

(Y,Z) position of ionization 
recorded through 
coincident signals on 
different wire planes

X position give by time 
delay from light signal
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Capturing Images of Neutrino Interactions

Recording wire 
signals over time, 
detector produces 
image-like data
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Capturing Images of Neutrino Interactions
tim

e

wire number

Plane 1 Plane 2 Plane 3

Example of data event in MicroBooNE. View of same event for each projection.

Color scale indicates amount of ionization electrons seen on wire at given time
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Measurables in the image

Flavor determined from finding partner lepton (muon,electron) produced in interaction

Neutrino energy inferred from momenta of resulting particles
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Measurables in the image

From ML perspective: the problem is predicting class and energy from images

We have simulations that can produce training examples with various labels

24



One approach: directly predict values

Example: CNNs have been used (another experiment) to predict the neutrino flavor

𝜈e interaction 𝜈𝜇 interaction

 Aurisano, A. et al. JINST 11 (2016) no.09
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http://inspirehep.net/author/profile/Aurisano%2C%20A.?recid=1444342&ln=en


One approach: directly predict values

Issue with training network to target final observable: modeling uncertainties

Neutrinos hit constituents of the nucleus -- an 
extremely complicated system to model

Neutrino energy inference influenced by knowing 
“type” of interaction

Can produce particles that cause patterns which 
fake the signal (primary e.g. photons from 
interaction can look like electrons)

Risk of model errors being trained into the networks
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MicroBooNE specific issue: backgrounds

For MicroBooNE, lots of 
backgrounds from cosmic rays 
since detector is on the surface

Requires parsing of image to 
find neutrinos

Images with target events only 
1 in 1000-10,000
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DL Reconstruction

Our goal is to produce constituent particles. Many 
techniques available

- Need object detection
- Classification

Evaluation with respect to analysis performance important
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Current Analysis
Have built a full 
reconstruction/analysis chain to 
search for the oscillation signal

A mixture of CNNs and traditional 
algorithms

Working analysis benchmarks 
improvements from CNN 
techniques

Pre-selection using light

Choosing interesting regions and 
removing obvious backgrounds

CNN for shower (electron) versus 
track (muon) patterns

Reconstruct neutrino interaction

Particle classification
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Current Analysis

First applications chosen as they 
are techniques where we could use 
non-signal data to evaluate network 
behavior on real data
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Preparing the data

● Images preparation:
○ Noise filtering
○ pulse finding + zero suppression
○ Deconvolve wire response

■ Accounting for electronics response + expected induced signal
○ Downsample in time (summed) by factor of 6

● 3D consistent cropping
○ Full size: 3456 (wire) x 6448 (ticks)
○ Downsampled size: 3456 x 1008 -- both dimensions about 3 mm
○ Cropped into 832 wire x 512 ticks (24 images per plane)
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Pixel labeling
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Pixel labeling

We use a U-Net for this 
problem
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Pixel labeling: behavior on real versus sim. images

These are cosmic 
particles that come 
to rest in the detector

Mostly muons, many 
of which decay into 
electrons

Use to check track 
and shower labeling
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Analysis Status

Analysis components complete

Evaluating:
● Data versus sim. differences 

through distributions of particle 
kinematics

● Sensitivity of analysis to see 
anomalous signal (or excluding it)

Not yet ready
● Hitting various performance 

milestone with simulation dataset
● Aim is to release result within year
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Further CNN techniques in the works

Also tackling more parts of the 
reconstruction chain

Finding and removing non-neutrino 
tracks

Providing 3D spacepoints to perform 3D 
reconstruction at earlier stage

“Reparing” images to assist track 
reconstruction
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Applying Instance Aware Segmentation

Currently 
adapting 
Detectron

Mask-RCNN 
network
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Mask R-CNN for cosmic detection and rejection

Example application on 
MicroBooNE cosmic data
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Mask R-CNN: evaluating performance
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Mask R-CNN: evaluating performance
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Image Repair and Tracking
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Image Repair and Tracking

Gaps impair ability to track 
reconstruction to accurate get 
momentum

Currently try to detect when track ends 
in gap and remove events

Overcoming this can also help with 
efficiency
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Image Repair and Tracking

Fills in tracks -- but can produce regions that 
are “odd” looking

Research ways to penalize net for producing 
odd shapes -- similar to way GANs are trained 
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3D Space Points
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3D Space Points
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LArFlow

enforce same-time tick, 
so only wire-direction 
flow predicted

matchability = 0 
when true target pixel in 
dead wires, below 
thresh, etc.

in LArTPC 
context
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LArFlow

Network predicts correspondence between pixels (charges) in Y, U, V ADC images
For pixel i in Y plane: the CNN is asked to predict 
shift needed to move to pixel 1175 Which is where the corresponding pixel is in U plane

i

Correspondence prediction gives 3D space-point for that charge

f(i)

47



LArFlow: Network

U

Y

V

conv

CNN

CNN

2D ADC image

concat

encoder

Loss function
𝓛 = λM + F

MU,Ydeconv

deconv FU,Y

MV,Ydeconv

deconv FV,Y

𝓛

For future: enforce 3D consistency 
loss between Y->U and Y->V 
prediction

(skip connections used)
decoder
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LArFlow: Loss
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LArFlow: Initial Performance
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Have plans to use cosmic 
muon data to evaluate similar 
metrics

Good enough for cosmic 
rejection

Improvements in precision 
needed for neutrino 
reconstruction
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LArFlow: Initial Performance

51

Top: combining 3D points with 
track/shower labeling

Bottom: using Mask-RCNN network to 
cluster cosmic muon candidates
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Towards 3D space-point reconstruction
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Our work is in 
collaboration with 
DL-based reco on 
space-points done 
here at SLAC
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Summary
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CNNs well-suited to analysis of LArTPC 
images

Applications developed in conjuction with 
physics analyses -- important for knowing 
effect on ultimate goal

Moving towards an end-to-end reconstruction 
chain using networks

Stay tuned for analysis result!
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