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Outline

Discuss efforts on the MicroBooNE
experiment to use convolutional neural
networks to improve physics analysis

e What are we trying to solve with CNNs? --
and why?

e From physics problem to ML problem

e Current Analysis Effort

e Developments

“Eyes” of the MicroBooNE detector -- a
time-projection chamber,-- before installation
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The MicroBooNE Experiment in a nutshell

“An accelerator neutrino oscillation
experiment”



Neutrinos

“An accelerator neutrino oscillation
experiment”




Neutrinos

The Three “FLAVORS”

Neutrinos are a type of the fundamental

particle electron

Key stats:

e No electric charge

e Interacts only via weak force and gravity

e \Very, very small mass: ~8 orders smaller than > muon
next heaviest particle!

e Come in three “flavors” -- based on what other
particle they make during certain interactions P tau




Life as Neutrino Physicist

No electric charge
=> observe indirectly

Flavor related to particle produced
during certain interaction
=> key to identifying type

Only Weak Force
=> rare process

vé —» electron




Neutrino Source

“An accelerator neutrino oscillation
experiment’

MicroBooNE uses a high-intensity
beam of neutrinos made at
Fermi National Accelerator Lab




Neutrino Oscillations

“An accelerator neutrino oscillation

experiment”
Neutrino created in certain flavor ...
. can later be
Goal Is to look fOI’ N detected in other flavor ...
evidence of Neutrino * "N
Oscillations M ~or later in original ...

(a 2\

Flavor detected
oscillations over distance
traveled



Neutrino Oscillations

Anomalies in other past
experiments can be
Interpreted as oscillations
occurring because of new
flavor or neutrino

Exciting if true!




MicroBooNE setup

Beam created as almost Given distance traveled and
entirely muon neutrinos energy of neutrinos,
Should be the case @ detector
v ¥ L v ¥ y
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MicroBooNE setup

But if consistent with past
Anomaly (measured in same
beam line)

We will see excess of
electron neutrinos
(at low energies)
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MicroBooNE setup

Our target measurement, then, is the energy of
neutrinos and the counts of the different flavors

The detector, a liquid argon time projection chamber,
provides high resolution images with which we can extract
these measurements
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Capturing Images of Neutrino Interactions

1. Charged particles interact in Ar

¢ Jonize electrons

* Produce scintillation light
2. Tonized e- drift toward anode
3. Wire planes detect drift e-

X=25m

Y

Y/

Cathode @ 70 kV
(plate)

Electric Field
~270 V/em

Anode
(wire plane)

WweT=A
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Capturing Images of Neutrino Interactions

1. Charged particles interact in Ar
¢ Jonize electrons
¢ Produce scintillation light

2. Ionized e- drift toward anode

3. Wire planes detect drift e-

X=25m

7y

y
Y/

Y/

-

Cathode @ 70 kV Electric Field
(plate) ~270 V/em

Anode
(wire plane)

weT=A

A neutrino
(dashed grey)
passes into the
detector and
Interacts
producing
charged particles
(solid yellow)
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Capturing Images of Neutrino Interactions

1. Charged particles interact in Ar

¢ Ionize electrons
¢ Produce scintillation light
2. Tonized e- drift toward anode
3. Wire planes detect drift e-

X=25m

Electrons

7y

wer=A

4
Y/

Scintillation Light
detected by PMTs

-
Cathode @ 70 kV Electric Field Anode
(plate) ~270 V/em (wire plane)

Charged particles
produce ionization
electrons along
path

(neutrino neutral
and leaves no
directy signature)
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Capturing Images of Neutrino Interactions

. hit photo-sensor (PMT)

Blue: absorbed on surface
Green: abosrbed in bulk
White-lines: particle trajectories

Light also produced by
charged particles.

Travels to sensors on
short (ns) timescales

Light provides timing
for event -- and course
position info.
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Capturing Images of Neutrino Interactions

1. Charged particles interact in Ar

¢ onize electrons
* Produce scintillation light

2. Ionized e- drift toward anode

3. Wire planes detect drift e-

X=25m

 Max drift time = 2.2 ms |

"4

WweT=A

4"'
L/
)/
L/
4
-

Cathode @ 70 kV Electric Field Anode

(plate) ~270 V/em (wire plane)

Scintillation Light
detected by PMTs

lonization electrons
drift towards
wireplanes
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Capturing Images of Neutrino Interactions

1. Charged particles interact in Ar X=25m -

* Jonize electrons . . .
* Produce scintillation light I O n |Zat| O n I n d U Ce
2. Ionized e- drift toward anode .
detectable signals
on nearby wires

A
\
P

i Drift Time = X position |

wer=A

3. Wire planes detect drift e-

Y/
'i

/' Scintillation Light

Y/ s detected by PMTs
/’ ¢ Charge collected | it
/ | by wire plane :

Cathode @ 70 kV Electric Field Anode “Cold” (in LAr) readout electronics
(plate) ~270 V/em (wire plane) greatly reduces the noise level
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Capturing Images of Neutrino Interactions

Three Wire Planes

8256 wires w/ pitch = 3mm
(induction) (induction) (collection) (Y, Z) = coincidence on wire

U plane V plane
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Capturing Images of Neutrino Interactions

1. Charged particles interact in Ar X=25m 5.

* Jonize electrons F Y

* Produce scintillation light Drift Time = X position
2. Ionized e- drift toward anode 1 i T' <
3. Wire planes detect drift e- %

W
| B

Combine timing and wire A
P ™

fo. to get 3D il .
IS ™ Hits on
reconstruction. N . .

/ intersecting wires
gives us (Y,Z)
I Y
[ !'
Mg
I 4
}L/ &
"5 //\Q
,4" 3%
/
Y/
Y/
Y/
y
Cathode @ 70 kV § | Electric Field Anode | “Cold” (in LAr) readout electronics
(plate) ~270 V/em (wire plane) greatly reduces the noise level

In principle: enough
information for 3D
reconstruction

(Y,Z) position of ionization
recorded through
coincident signals on
different wire planes

X position give by time
delay from light signal
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Capturing Images of Neutrino Interactions

Anode wire plane

How Does a LArTPC Work UV Y

Bo Yu (BNL) Liquid Argon TPC

Recording wire
signals over time,
detector produces
Image-like data

Cathode
Plane

— :
time

Edrift~500V/cm m—
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Capturing Images of Neutrino Interactions

Plane 1 Plane 2 Plane 3

time

wire number

Example of data event in MicroBooNE. View of same event for each projection.

Color scale indicates amount of ionization electrons seen on wire at given time
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Measurables in the image

Flavor determined from finding partner lepton (muon,electron) produced in interaction

Neutrino energy inferred from momenta of resulting particles
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Measurables in the image

From ML perspective: the problem is predicting class and energy from images

We have simulations that can produce training examples with various labels
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One approach: directly predict values

Example: CNNs have been used (another experiment) to predict the neutrino flavor

v, interaction

20 a0 60 80
Plane

100

v, interaction

0 20 40 &0 80

Plane

et al. JINST 11 (2016) no.09

100
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http://inspirehep.net/author/profile/Aurisano%2C%20A.?recid=1444342&ln=en

One approach: directly predict values

Issue with training network to target final observable: modeling uncertainties

Neutrinos hit constituents of the nucleus -- an

extremely complicated system to model
Charge Exchange

Elastic
Scattering

Neutrino energy inference influenced by knowing
“type” of interaction

Can produce particles that cause patterns which
fake the signal (primary e.g. photons from
interaction can look like electrons)

v’
Risk of model errors being trained into the networks o
on Production
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MicroBooNE specific issue: backgrounds

Machine Learning in ComputerVision

High-Precision
Detector Data Analysis

Image Credit
Fermilab Today
http://news.fnal.gov/201

For MicroBooNE, lots of
backgrounds from cosmic rays
since detector is on the surface

Requires parsing of image to
find neutrinos

Images with target events only
1in 1000-10,000
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DL Reconstruction

Our goal is to produce constituent particles. Many
techniques available

- Need object detection
- Classification

Evaluation with respect to analysis performance important

Locate
Neutrino Interaction
reaction

| Detect,presehc_e-of = N
neutrino in whole event

Neutrino
Interaction
Reconstruction

= =

Pixel Labeling
+

Particle ID
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Current Analysis

Have built a full
reconstruction/analysis chain to

( &
search for the oscillation signal | PMTPre-Cuts | o clection using light
A mixture of CNNs and traditional [ Ensimic Taggingj o | |
algorithms & RO Finding Choosing interesting regions and
o =

removing obvious backgrounds

‘

Track vs. Shower
Pixel Labeling CNN for shower (electron) versus

] track (muon) patterns

Working analysis benchmarks
improvements from CNN
techniques s,

(.%D Vertex R(‘('()) ) ) .
Reconstruct neutrino interaction

o

Particle ID]

Particle classification
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Current Analysis

.
(PMT Pos ik
.4

¥

&
& ROI Finding

osmic Tagging‘

‘

Track vs. Shower
Pixel Labeling

]

L

C3 D Vertex Rcco)

E

Particle |D]

First applications chosen as they

are techniques where we could use
non-signal data to evaluate network

behavior on real data
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Preparing the data

e Images preparation:
o Noise filtering
o pulse finding + zero suppression
o Deconvolve wire response
m  Accounting for electronics response + expected induced signal
o Downsample in time (summed) by factor of 6

e 3D consistent cropping

o Full size: 3456 (wire) x 6448 (ticks)
o Downsampled size: 3456 x 1008 -- both dimensions about 3 mm
o Cropped into 832 wire x 512 ticks (24 images per plane)
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Pixel labeling

In reconstructing events, useful to be able to separate two
types of patterns: tracks and showers

The Goal yellow: track
cyan: shower

32



Pixel labeling

We use a U-Net for this
problem

Input Tensor

MicroBooNE
Simulation

12X 512X 1

5
1

512 \

l convolutions *
o'-

o Intermediate
512 X 512 x 64

Encoder

U-ResNet

Concatenation of 512 x 512 tensors

High spatial

Concatenation of tensors
at all spatial dimensions
(32, 64, 128, 256)

Repeat
1/2 down-sampling
+ ResNet convolutions

Intermediate
- (most contracted)
16 x 16 x 1024

Repeat
x2 up-sampling
+ ResNet convolutions

Output Tensor

MicroBooNE
Simulation

512X 512X 3

convolutions

Intermediate
Si1zx i1z x 64

i

Decoder

MicroBooNE: arxiv:1808.07629
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Pixel labeling: behavior on real versus sim. images

Pixel Fraction

Pixel Fraction

— — —
= =) o =
A & 3 2

—
=

ok

o

10°

-
o

—
o

—
o

40
1000

¥ \roge
-

(b)

Data MicroBooNE
Simulation Data vs. Simulation

. P
OV g o
Ve

1 A x
'.4
0.2 0.4 0.6 0.8 1.0
Shower Score =
z
(© <
"
Data MicroBooNE [l
Simulation Data vs. Simulation |
|
/1
A
s
-
.‘.-:.ll'vi.‘.'-b:.'
0.2 0.4 0.6 0.8 1.0

Track Score

= Sample: stopping muons

= Score distributions similar

" Robust to moderate
difference in images as

shown by peak pixel
distributions

900; MicroBooNE

w00 Data vs. Simulation
700/

6005 D Simulation

‘00 D Data

400,

300¢

200

sdasadasaldasadaaalaaal o a3
0 20 40 60 S0 100 120 140 160 150 200
Peak Pixel Value

These are cosmic
particles that come
to rest in the detector

Mostly muons, many
of which decay into
electrons

Use to check track
and shower labeling
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Analysis Status

4 A
PMT Pre-Cuts
- _4

¥

[ Cosmic Tagging
| & RO findingJ

-

‘

Pixel Labeling

Track vs. Shower

J

!

(30 Vertex Rccn)

o

Particle IDJ

Analysis components complete

Evaluating:

e Data versus sim. differences
through distributions of particle
kinematics

e Sensitivity of analysis to see
anomalous signal (or excluding it)

Not yet ready
e Hitting various performance
milestone with simulation dataset
e Aim is to release result within year
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Further CNN techniques in the works

Also tackling more parts of the

(PMT Pre-Cuts | reconstruction chain
i
. =1
Cosmic Tagging
& ROI Finding | Finding and removing non-neutrino
' tracks

Track vs. ShowerJ

Pixel Labeling

Providing 3D spacepoints to perform 3D

! reconstruction at earlier stage
(30 Vertex Rccn)
g “Reparing” images to assist track
Particle IDJ paring Imag
reconstruction
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Applying Instance Aware Segmentation

Currently
adapting
Detectron

Mask-RCNN
network
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Mask R-CNN for cosmic detection and rejection

Example application on
MicroBooNE cosmic data




Mask R-CNN: evaluating performance

Purity =

Sum|[(Prediction) x(Ground Truth) x (ADC Binary)]

Sum[(Prediction) x (ADC Binary )]

___ Ground Truth 1
e Ground Truth 2

@ Prediction Mask

Sum[(Prediction Union) x (Ground Truth) x (ADC Binary)]
Sum[(Ground Truth) x (ADC Binary )]

Efficiency =

= Ground Truth

@ Prediction 1

@ Prediction 2
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Mask R-CNN: evaluating performance

Eff vs Pur 1.75 Epochs, 7.976 Specialized Epochs

training on a dataset with more 0.7
overlapping clusters

S‘ Efficiency vs Purity 0319999 il
*  MCC 8 Simulation 5 I
* y-—Plane e 09 s  ‘G2m -
* LogZ Axis w Mean y 0.87
08| 1 pevx 0.07174 =10°
* Specialized Epochs correspond to StdDevy 0.152 =

0.6

2
0.5 . 1

0.4
0.3"

10
0.2

0.1-

0.\1‘11\\‘ “\l\\\\i‘ \‘JH
0 01 02 03 04 05 06 0.7 08 09 1
Purity
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Image Repair and Tracking

= |In industry: filling in blanked-out regions in images
= Using a similar idea to fill in missing parts of track in MicroBooNE
= Useful for 3D track reco (trajectory only, not calorimetry)

http://arxiv.org/pdf/1804.07723.pdf NVIDIA Corporation
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Image Repair and Tracking

= Tracking: clustering of continuos clusters of 3D points
= difficult in regions w/ dead readout channels: track gaps

Cosmic ray simulated event projected in the U plane

MicroBooNE <

Confidential

time tick

Gaps impair ability to track
reconstruction to accurate get
momentum

Currently try to detect when track ends
in gap and remove events

Overcoming this can also help with

wire number efficiency
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Image Repair and Tracking

U Plane adc value
2 True Image
o
§ 10°| — Output Image

3
§ ]
10‘; E
Fills in tracks -- but can produce regions that al ,
are “odd” looking
10° i Bu
Research ways to penalize net for producing 10’,; z
odd shapes -- similar to way GANs are trained | oo e e e 0 e s oo L



3D Space Points

® To reconstruct 3D position of a charge deposit: need to match
charges in same time window on at least 2 wire planes

= 3D position from wire intersection

Charge depositions in U plane Charge depositions in same time window in Y

MicroBooNE
Confidential

MicroBooNE
Confidential

time tick

wire number wire number

44



3D Space Points

® Goal of dense pixel correspondence: match regions of one
image to another, connecting semantically similar items

colors indicate what
should be matched

Accurate semantic correspondences

Choy et al. “Universal Correspondence Network” NIPS 2016

SCAPE

source target

Wei et al. “Dense Human Body
Correspondences Using Convolutional 37
Networks” CPVR 2016

Zhou, Krahenbdhl et al. “Learning Dense Correspondence

via 3D-guided Cycle Consistency” CPVR 2016
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LArFlow

Matchability

in LArTPC
context

matchability = 0

when true target pixel in
dead wires, below
thresh, etc.

enforce same-time tick,
so only wire-direction
flow predicted
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LArFlow

Network predicts correspondence between pixels (charges) in Y, U, V ADC images

For pixel i in Y plane: the CNN is asked to predict

shift needed to move to pixel 1175 Which is where the corresponding pixel is in U plane
400~ 3 $400— g
24000 — 120 240F —(12082
- E g F 5
FI0E — 11062 i \ ' — 1106
E F N
300 5 300 PR >
E —{1000 m i) —1000
250 250 SR
F —900 E i . —1900
200 o 200 f( i ) I
B 800 150 0 800
100F- 700 100 &\ 700
sof— 600 sof— \ 600
0 550 ~"Fo00 050~ 110011501200 1250~ 1300 1350 O 5500 ‘7(‘1\0' 5005000001700 1200 1300
Y wire number U wire number

Correspondence prediction gives 3D space-point for that charge
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LArFlow: Network

2D ADC image
U >
Y pP—>
V —>

encoder

conv

CNN

(skip connections used)

concat

CNN

Loss function

L=NM +F

decoder
deconv Myy
deconv Fuy
deconv Myy
deconv Fuy
7

For future: enforce 3D consistency
loss between Y->U and Y->V
prediction
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LArFlow: Loss

reconstructed




LArFlow: Initial Performance

Absolute distance in y (cm) between reco and truth

i —— track edge
—— track core

T

3D point matched to incorrect track

HHH i

1 1 1 1 L i t I 1 1
50 100 150 200 250

10?

10

IHII T IIllIIIl T TTTTT

o

Within 10cm for 92% of hits
Within 50cm for 95% of hits
If flow prediction (U or V wire) is wrong, we shift to incorrect y

Have plans to use cosmic
muon data to evaluate similar
metrics

Good enough for cosmic
rejection

Improvements in precision

needed for neutrino
reconstruction
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LArFlow: Initial Performance

Top: combining 3D points with
track/shower labeling

Bottom: using Mask-RCNN network to
cluster cosmic muon candidates

% |



Towards 3D space-point reconstruction

Our work is in
collaboration with
DL-based reco on
space-points done
here at SLAC

Pixel Detctor

Wire : 3D Point :
Detector :{>E Reconstruction E:>

e U-ResNet + Point Prediction Network (PPN)
o w/ Sparse (Submanifold) Convolution
o Mask: Track/Shower/Delta-ray/Michel-e
o Points: track start/end + shower start
o Feature tensor: before U-ResNet linear layer

L
1 : b R |2
£ /. '
I" =
y )} .

- i ‘ : ‘:\_,, .

| "J/ o
AT
/

3D Points | =)

Point Feature

Extraction
" ¢ JL )|

Pixel Feature Five Type
Feature Points Mask
1 (// ‘

l“! //’

k /

,f £




Summary

CNNs well-suited to analysis of LArTPC
images

Applications developed in conjuction with
physics analyses -- important for knowing
effect on ultimate goal

Moving towards an end-to-end reconstruction
chain using networks

Stay tuned for analysis result!

Results from work by:

‘4- 5—" "/ 7
Katie Mason Joshua Mills
(grad) (grad)

Ralitsa Sharénova
(post-doc)
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