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à can we get an online prediction of what the upstream intercepting diagnostic would show?

Generally consistent machine configuration (changing settings only)
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HPSim at LANSCE 

(based on PARMILA)

X. Pang, et al., PAC13, MOPMA13

L. Rybarcyk, et al., IPAC15, MOPWI033
L. Rybarcyk, HB2016, WEPM4Y01

X. Pang and L. Rybarcyk, CPC185, is. 3 (2014)
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Challenges with this approach: 

Execution often still isn’t so fast

Can require HPC resources

Still need a lot of work to get 
simulation to match the machine 

closely

Online 
Model

Real-time prediction of beam characteristics or explicit 
diagnostic output

fast-executing physics-based simulation

measured 
machine
inputs



One approach: faster modeling codes
Simpler models (tradeoff with accuracy)

analytic calculations

Parallelization and GPU-acceleration of existing codes
HPSim/PARMILA

elegant 

Improvements to modeling algorithms

I. V. Pogorelov, et al., IPAC15, MOPMA035

X. Pang, PAC13, MOPMA13

e. g.  J. Galambos, et al., HPPA5, 2007

J.-L. Vay, Phys. Rev. Lett.98 (2007) 130405Lorentz-boosted frame

Another approach: machine learning model
Once trained, neural networks can execute quickly

Train on data from slow, high-fidelity simulations

Train on measured data
+

Simulation
+ Machine

NN Model

An initial study at Fermilab:

One PARMELA run with 2-D space charge: ~ 20 minutes
Neural network model: ~ a millisecond

A. L. Edelen, et al. NAPAC16, TUPOA51
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Real diagnostic no longer available:
• moved to another location (e.g. cost constraints)
• destructive, would interrupt normal ops
• blocked for update time
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The Low Energy Beamline at FAST
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Neural Network Model

Neural
Network

Solenoid Current

Phases (Gun, CC1, CC2)

Initial Bunch Properties
(charge, length, ε

x,y 
, x-y corr.)

Transmission

Average Beam Energy

Transverse Sigma Matrix

ε
x,y  β

x,y
α

x,y

— 600	simulation	samples
— 250	measured	data	samples
— fully-connected,	feedforward	NN	
— tanh activation	functions

The subject of this virtual diagnostic work

to high energy line 
and IOTA
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gun	phase	scans
solenoid	current	scans
(with	two	different	laser	intensities)

mask screenbeam

fit	to	obtain	
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Could in principle use measured data alone, but want to be efficient with machine time
à use simulation data to fill in wider range of settings

cathode à CC2
with 3-D space charge routine



Poor agreement between simulation and 
measured data for some input/output 

relationships

à can we update the NN model with 
measured data without disrupting the other 

predictions?

Training on physics model  . . .  NN will only be as accurate as the physics model

Physics-based 
simulation had 
good agreement 
with measurements

Physics-based 
simulation had poor 
agreement with 
measurements
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Why bother with simulation? à Rough initial solution facilitates training with small amount of measured data



But that still relies on the slit fits…

• Fitting procedure changes (e.g. how image is processed, alignment) à need to re-train
• Non-ideal beam à poor slit fits



Predicting Image Output Directly

Simulated NN Predictions Difference

A. L. Edelen, et al. IPAC18,  WEPAF040



Bigger Picture for FAST

(αx		,	αy)

(εnx ,	εny)
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(Np)

(E)

A. L. Edelen, et al. NAPAC16, TUPOA51
Earlier work: account for changes in laser spot

The subject of this virtual diagnostic work

to high energy line 
and IOTA

NN-based round-to-flat beam transform
One piece of a larger set of studies:

• Accounting for laser spot changes
• NN controller (e.g. round-to-flat beam transform)
• Final aim would be to combine these

Fast-executing, accurate machine model

Online:        faster machine studies + online optimization

Offline: study planning
downstream component design
controller training

Q120

Q119

Q118

Neural
Network

Initial Sigma Matrix
or upstream settings

Desired Sigma Matrix

Work with J. Edelen, D. Edstrom,  A. Halavanau,  J. Ruan, P. Piot, A. Romanov



Lots of interesting work now at SLAC along these lines …



Virtual Diagnostics A. Sanchez-Gonzalez, et al.  https://arxiv.org/pdf/1610.03378.pdf

• Used archived data to learn correlation between fast and slow 
diagnostics

• Looked at a variety of ML methods and different diagnostics



Longitudinal Phase Space Prediction for FACET-II and LCLS

Figures courtesy C. Emma

Emma, Edelen, et al. in preparation

• Simulation + NN results match well for FACET-II (see left)
• Small proof-of-principle study with LCLS machine data and XTCAV images (see below)



• Image diagnostics à nice to use directly, and some yield relatively complicated information

• Neural Networks à very good for image processing + can learn control policies from data

Could use image-based diagnostics directly in learned control policies to switch 
quickly between requested operating conditions, including to different target phase 
space images from the XTCAV

D. Ratner, et al., PRSTAB18, 030704 (2015)
C. Behrens, et al., Nat. Commun. 5, 3762 (2014)

A. Marinelli, et al., Nat. Commun. 6,  6369 (2015)

Computer  Vision + Neural Network-based Control Policies



Use neural network as a warm start for a standard optimizer

• The Extremum Seeking (ES) algorithm has been 
used successfully for particle accelerator tuning

• ES can get stuck in local minima and takes 
awhile to converge

• Given some desired beam characteristics, a NN 
can provide initial settings 
à fewer iterations of ES then needed to converge 

Figure:  Alex Scheinker

Work with C. Emma, A. Scheinker, D. Bohler,  A. Lutman

(see  A.L. Edelen et al., FEL ’17 for a simple NN control policy example)



Preliminary Results

• Conducted scan of L1S phase and BC2 peak current à trained NN

• Used NN to give suggested settings based on a new target XTCAV image, 
starting from far away

• ES alone unable to converge in this case, but able to converge with suggested settings 
from NN

Work with C. Emma, A. Scheinker, D. Bohler,  A. Lutman

Figures:  Alex Scheinker
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Conclusions + Outlook

• Virtual diagnostics using ML 
à potentially useful both for prediction and control when physical diagnostics 

have some limitations to their use (e.g. destructive measurement, too slow to update)

à limitations need to be more fully explored (e.g. sensitivity to machine drift, upstream errors)

• Good preliminary results + experience from transverse phase space diagnostic at FAST

• Previous demonstration at SLAC using quickly-updating diagnostics to predict measurements 
derived from slow diagnostics

• Ongoing work at SLAC (FACET-II and LCLS) to rigorously demonstrate in operation for 
longitudinal phase space prediction, as well as to facilitate control


