Bias Scans 2016

Matt Solt

SLAC National Accelerator Laboratory

mrsolt@slac.stanford.edu

July 6, 2016

- 4 聞 と 4 臣 と 4 臣 と

э

Method

- Use run 007457 (bias scan run) and perform cluster analysis and hit efficiency analysis in layer 1
- Bias scan was run for voltages of 20 to 180 V in increments of 20 V
- ▶ Fit the charge distribution to a Laudau-Gaussian convolution
- Grab the mean value from the fit and plot it against bias voltage
- Make plots for all clusters, single hit clusters, multiple hit clusters, and clusters of hits on track
- Plot the hit efficiency (see hit efficiency studies for more detail) as a function of bias voltage
- Plot the hit efficiency as a function of bias voltage and hit position in layer 1.

Sample Bad Fits

 Bias Voltage of 20 V and 40 V were excluded form the analysis as their peaks are run into the x-ray region

э

A B > A B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Bias Scans

Sample Fits All Clusters

Stanford

Bias Scans

Bias Scans All Clusters

Mean Charge for Varying Bias

Sample Fits Single Hit Clusters

Stanford

Bias Scans

Bias Scans Single Hit Clusters

Mean Charge for Varying Bias Single Hit Clusters

Sample Fits Multiple Hit Clusters

Stanford

Bias Scans

Bias Scans Multiple Hit Clusters

Mean Charge 1001 1002 – Top L1 Axial Top L1 Stereo Bot L1 Axial * Bot L1 Stereo * 1000 800 600 400 200 0 20 40 60 80 100 120 160 180 140 Bias (V)

Mean Charge for Varying Bias Multiple Hit LCusters

Sample Fits Clusters on Tracks

Bias Scans Clusters on Tracks

Mean Charge for Varying Bias Hits on Track

Bias Scans Hit Efficiency

Hit Efficiency for Bias Scan

Bias Scans Hit Efficiency Bias 20 V

Bias Scans Hit Efficiency Bias 40 V

Bias Scans Hit Efficiency Bias 60 V

Bias Scans Hit Efficiency Bias 80 V

Bias Scans Hit Efficiency Bias 100 V

Bias Scans Hit Efficiency Bias 120 V

Bias Scans Hit Efficiency Bias 140 V

Bias Scans Hit Efficiency Bias 160 V

Bias Scans Hit Efficiency Bias 180 V

Things to do

- Ideally, we should obtain the mean of the charge distribution fit as a function of layer 1 hit location
- This will be difficult since we are limitted by statistics and fitting can be very tricky