The physics of particle detectors

Justin Vandenbroucke (University of Wisconsin)
Fermi Summer School, Lewes, Delaware May 31, 2016

Outline

- Charged particles in matter
- Ionization
- Bremsstrahlung
- Cherenkov
- Photons in matter
- Photoelectricabsorption
- Compton scattering
- Pair production
- Particle showers
- Electromagnetic showers
- Hadronic interactionsand showers
- Signals in detectors
- Scintillation
- Trackers
- Photomultiplier tubes

Why learn the physics of detectors?

- Understand the design and operation of your experiment
- Understand the data from your experiment and use it as well as you can
- Understand the way other experiments were designed and be able to critique them and their results
- Learn which systematic uncertainties are important and how to quantify them
- Design new experiments
- Same physical processes occur in detectors as in astrophysical sources that produce the particles

The Particle Data Book: a valuable resource

- Free from the Particle Data Group: request online
- Available as huge phone book, tiny summary pocket book, 50 MB PDF, or web site
- http://pdg.lbl.gov/
- Updated every two years
- Tables with summaries of particle properties: masses, livetimes, decay modes, branching ratios, ...
- Short (dense) chapters reviewing Higgs searches, cosmic rays, interactions of particles in matter, neutrino oscillations, probability and statistics, cosmology, dark matter, ...
- A very useful reference

Feynman diagrams: the QED vertex

- It is the nonzero electric charge of the fermion that matters (can be lepton or quark)
- For full interactions, multiple vertices can be combined and momentum must be conserved

Interactions

electron-electron scattering:

electron-positron annihilation followed by pair production:
electron-positron annihilation to two photons:

Also: Compton scattering, inverse Compton scattering

Electromagnetic interactions of electrons and photons in matter

Ionization:

Compton
scattering:

Electron

+ bremsstrahlung

Charged particles in matter

Energy loss by ionization

- Ionizing radiation = high energy particles energetic enough to ionize atoms in matter
- The energy transferred to the ionized electrons is lost by the incident particle
- Technically, "ionization" loss includes loss due to merely exciting rather than ionizing atoms
- Energy of the energized (either excited or free) electrons is distributed as E^{-2}
- Process is stochastic, with large fluctuations
- Intuition from classical mechanics and Coulomb interactions

Conceptual expectations for ionization loss

- Dependence on density (ρ) of medium?
- Dependence on speed (β) of particle?
- Dependence on charge (Z) of incident particle?
- Dependence on nuclear charge $\left(\mathrm{Z}_{\text {nucl }}\right)$ of matter?

Ionization loss

- Slower particles ionize more
- At intermediate energies, heavier particles ionize more (because they travel more slowly)
- Higher-charge particles ionize more
- Once β increases to be close to 1 , minimum is reached: "minimum ionizing particle" (MIP)
- Protons are MIPs from ~ 0.1 to ~ 100 GeV
- MIP energy loss depends only on particle charge and material density (not on particle mass)
- For fixed KE below MIP: higher mass means lower speed so greater dE/dx

Full expression for ionization loss: Bethe-Bloch equation

$$
\frac{d E}{d x}=\rho \frac{Z_{\mathrm{nucl}}}{A_{\mathrm{r}}}\left(0.307 \mathrm{MeVcm}^{2} / \mathrm{g}\right) \frac{Z^{2}}{\beta^{2}}\left[\frac{1}{2} \ln \left(\frac{2 m_{e} c^{2} \beta^{2} \gamma^{2} T_{\max }}{I^{2}}\right)-\beta^{2}-\frac{\delta(\beta)}{2}\right]
$$

$d E / d x=$ energy loss of particle per unit length
$\mathrm{Z}=$ charge of the particle divided by the proton charge
$\mathrm{c}=$ velocity of light
$\beta \gamma=$ relativistic parameters as defined in Sect. 1.3
$\rho=$ density of the material
$\mathrm{Z}_{\mathrm{nucl}}=$ dimensionless charge of the nuclei
$A_{\mathrm{r}}=$ relative atomic weight
$I=$ mean excitation energy in eV . Parameter usually determined experimentally. It is typically around (10 eV times $\mathrm{Z}_{\text {nucl }}$)
$T_{\max }=$ maximum energy transfer to the electron. For all incoming particles except the electron itself this is to a good approximation given by $\approx 2 \mathrm{~m}_{\mathrm{e}} \mathrm{c}^{2}$ $\beta^{2} \gamma^{2}$. For electrons $\mathrm{T}_{\max }$ is the energy of the incoming electron.
$\delta \beta=$ density-dependent term that attenuates the logarithmic rise of the cross section at very high energy. See (Ref. [6] in Chap. 1) for a discussion of this term.

Example: energy loss by muons in copper

Bremsstrahlung and radiation length

- Bremsstrahlung is radiation due to hard Coulomb interactions of a particle with atomic nuclei ("braking radiation")
- More important for light ($e^{ \pm}$) than heavy particles
- Radiation is forward beamed
- $\mathrm{dE} / \mathrm{dx}$ is proportional to energy: $\frac{d E}{d x}=-\frac{E}{X_{0}}$

$$
\frac{1}{X_{0}} \approx 4 \alpha r_{0}^{2} \frac{\rho N_{\mathrm{A}}}{A_{\mathrm{r}}} Z_{\mathrm{nucl}}\left(1+Z_{\mathrm{nucl}}\right) \ln \left(\frac{183}{\sqrt[3]{Z_{\text {nucl }}}}\right)
$$

$X_{0}=$ radiation length of the material
$N_{\mathrm{A}}=$ Avogadro's number
$\alpha=$ fine structure constant ($\alpha \approx 1 / 137$)
$r_{0}=$ classical electron radius ($2.8210^{-15} \mathrm{~m}$)

- The proportionality constant in bremsstrahlung $\mathrm{dE} / \mathrm{dx}$ is by definition the radiation length, a property of the material
- Over one radiation length, the particle energy is reduced (on average) by one efolding
- In water, radiation length $=36 \mathrm{~cm}$

(Multiple) scattering

incoming particle

- In addition to losing energy, charged particles change direction due to Coulomb scattering
- More important for lighter particles ($e^{ \pm}$)
- Probability of scattering is proportional to traversed length
- Traversing large amount of material, light particles can scatter multiple times
- Lower energy particles scatter more
- As particle loses energy, scattering angle increases
- At low energy, direction can be randomized
- Competition between direction randomization and energy loss

Cherenkov radiation

- Due to polarization of medium, produced when a relativistic charged particle travels through a medium faster than the speed of light in the medium (c / n)
- Typically a negligible contribution to particle energy loss
- Very useful for detecting particles and measuring their direction, energy, or mass/identity
- Radiation emitted along a narrow cone of opening angle θ_{C} (can vary with wavelength):
- Radiation intensity scales with particle Z^{2}

$$
\cos \left(\theta_{c}\right)=\frac{(c / n) t}{v t}=\frac{c}{n v}
$$

- Spectrum of Cherenkov light increases with frequency:

$$
\frac{d^{2} E}{d \hbar \omega \cdot d x}=\hbar \omega \frac{Z^{2} \alpha}{\hbar c}\left[1-\frac{c^{2}}{n^{2} v^{2}}\right]
$$

~200 photons/cm in water

Stochastic nature of energy loss

- $d E / d x$ describes the mean energy loss
- Most energy loss phenomena are actually discrete and stochastic, not smooth and continuous
- Stochastic nature of ionization loss is important for thin absorbers
- For thick absorbers, ionization loss is fairly smooth
- Stochastic nature of other interactions
(bremsstrahlung, pair production, photonuclear interactions) typically important even for thick absorbers

Interactions of X-rays and gamma rays: photoelectric, Compton, pair production

- While ionization loss by charged particles is roughly continuous, photon processes are typically catastrophic: zero energy loss until one sudden event removes much or all of the photon energy

Photoelectric effect

- Complete absorption of incident photon by atomic electron
- Electron is either excited or ejected
- Energy lost by photon equals kinetic energy transferred to electron minus binding energy
- Cross section
- Decreases strongly with photon energy
- Increases strongly with atomic charge Z

$$
\sigma \approx \operatorname{Const} \frac{Z^{n}}{E_{\gamma}^{3.5}}
$$

- n varies with energy between 4 and 5
- In addition to this overall smooth behavior, there are jumps at atomic shell energies
- Useful for photon detection (photomultipliers)

Compton scattering

- Elastic scattering of photon and electron

- Typically a high energy photon transfers energy to a low energy electron
- "Inverse" Compton scattering: high energy electron transfers energy to a low energy photon
- Can be useful for photon detection
- Can also be a nuisance: changes photon direction
- Cross section given by Klein-Nishina formula:

$$
\frac{d \sigma}{d \Omega}=\frac{r_{0}^{2}}{2}\left(\frac{\hbar \omega^{\prime}}{\hbar \omega}\right)^{2}\left(\frac{\hbar \omega}{\hbar \omega^{\prime}}+\frac{\hbar \omega^{\prime}}{\hbar \omega}-\sin ^{2} \theta\right)
$$

$$
\begin{array}{cr}
\sigma=\frac{8 \pi}{3} r_{0}^{2} & \hbar \omega \ll m_{e} c^{2} \\
\sigma=r_{0}^{2} \pi \frac{m_{e} c^{2}}{\hbar \omega}\left[\ln \left(\frac{2 \hbar \omega}{m_{e} c^{2}}\right)+\frac{1}{2}\right] & \hbar \omega>m_{e} c^{2}
\end{array}
$$

- Low-energy limit is energy independent
- Scattering off single electrons:Thomson scattering
- Coherent scattering off bound electrons in atom: Rayleigh scattering

Angular distribution of Compton scattering

- At high energies, outgoing photon direction similar to incoming photon direction
- At low energies, direction is randomized more

Pair production

- Photon is converted to an electron-positron pair
- Cross section rises quickly from threshold to a constant value at high energy
- At high energy, mean free path for pair production is $X_{0}{ }^{*} 9 / 7$
- Opening angle between electron and positron decreases with photon energy
- Electron and positron produced preferentially in the polarization plane of the gamma ray

Summary of photon interactions in matter

- A single photon interacts with a probability proportional to absorber thickness (for thin absorbers)
- A beam of photons is attenuated exponentially with distance

Absorption of a photon beam by matter

- Number (not energy) of photons in a beam is attenuated exponentially
- Absorption length inversely proportional to cross section

Dependence of photon interaction (mass attenuation coefficient) on material composition

- Photoelectric effect (photons see atomic shells)
- Increases strongly with Z
- Absorption edges (especially at K shell)
- Compton scattering (photons see individual electrons)
- Scales with electron density (number of electrons per gram)
- High in hydrogen due to lack of neutrons
- Only varies by 20\% in other elements
- Pair production (photons see nucleus)
- Increases strongly with Z (approximately as Z^{2})
- High energy limit (>> $m_{e} c^{2}$):

$$
\sigma=\frac{7}{9} 4 \alpha r_{0}^{2} Z_{\text {nucl }}\left(Z_{\text {nucl }}+1\right) \ln \left(\frac{183}{3 \sqrt{Z_{\text {nucl }}}}\right)
$$

Photoelectric, Compton, and pair production probabilities

- Interaction probability μ (has units cm^{-1})
- τ : photoelectric probability
- σ : Compton probability
- к: pair production probability
- Total interaction probability $\mu=\tau+\sigma+\kappa$

Particle showers

Radiative loss by electrons (or positrons)

- For high energy electrons, radiative energy loss dominates ionization energy loss
- Radiative energy loss by an electron passing through a medium is proportional to the energy of the electron:

$$
\frac{d E}{d x}=-\frac{E}{X_{0}}
$$

- This means the energy of electrons passing through a medium decreases exponentially:

$$
E=E_{0} e^{-x / X_{0}}
$$

- X_{0} is the characteristic energy loss scale for electrons, the radiation length (depends on material roughly as $Z^{-1}(1+Z)^{-1}$)
- Air: $37 \mathrm{~g} / \mathrm{cm}^{2}$
- Lead: $6 \mathrm{~g} / \mathrm{cm}^{2}$
- The critical energy ($\sim 600 / \mathrm{Z} \mathrm{MeV}$) is the energy at which radiative energy loss equals ionization energy loss
- Conversion length = typical length for photon to travel before pair producing, $\sim(9 / 7) X_{0}$

Electromagnetic shower: simple model

- Initiated by gamma, electron, or positron

- Alternation between
- Pair production (must occur near a nucleus to conserve momentum)
- Bremsstrahlung radiation (radiative energy loss caused by deceleration of $e^{ \pm}$in Coulomb field of nucleus: dominates ionization loss at high energy)
- Can occur in any medium with nuclei: crystal, ice, atmosphere, ...

Electromagnetic shower development

- For a primary particle of energy E_{0}, after t radiation lengths (generations), the energy of each $e^{ \pm}$or gamma will be approximately $E_{0} / 2^{t}$
- Continues until $E=E_{\text {crit }}$
- So shower maximum is at $t_{\max }$, when $E_{\text {crit }}=$ $E_{0} / 2^{\text {tmax }}$
- Depth of shower max increases logarithmically with primary energy: $t_{\max }=\ln \left(E_{0} / E_{c r i t}\right) / \ln 2$
- Total track length of charged particles (number of radiation lengths) $\propto E_{d} / E_{\text {crit }}$

Development of gamma-ray air showers

- In purely electromagnetic showers (simplified model), the nuclei do not actively participate (only as catalysts for electromagnetic interactions)

Strong interactions

- So far we have focused on electromagnetic interactions: ionization loss, bremsstrahlung, photoelectric, pair production
- High energy hadrons (protons, neutrons, pions, ...) can undergo strong interactions in matter
- Inelastic: produces quarks which hadronize to mesons or baryons
- Non-hadrons (electrons, muons, neutrinos, ...) do not undergo strong interactions
- Because strong force has a very short range, strong cross section at high energy (above 1 GeV) is comparable to geometric cross section of nucleus
- 1 barn $=10^{-24} \mathrm{~cm}^{2}$
- Proton radius $\sim 1 \mathrm{fm}$, area ~ 40 millibarn
- Nucleus of atomic number A has cross section given approximately by

$$
\sigma \approx 4 \times 10^{-26}(A)^{2 / 3} \mathrm{~cm}^{2}
$$

Strong interaction cross section grows slowly with energy

Hadronic (strong) interaction length

- Mean free path between hadronic interactions, for protons in matter
- Number density of nuclei in matter: $N=\rho N_{A} / A$
- $N_{A}=$ Avogadro's number

$$
\lambda=\frac{1}{N \sigma} \approx \frac{A^{1 / 3}}{\rho} \frac{1}{N_{A} 4 \times 10^{-26}} \approx \frac{A^{1 / 3}}{\rho} 35 \mathrm{~g} / \mathrm{cm}^{2}
$$

- For typical solids, between 10 and 100 cm
- Typically larger than radiation length X_{0} by factor of a few

Hadronic showers

- In hadronic showers, the hadrons (nuclei) actively participate
- Pions (and heavier mesons) are created
- Mesons produce muons, neutrinos, and electromagnetic subshowers

Development of cosmic-ray air showers
pion-nucleus interaction

Hadronic showers are clumpier and longer than electromagnetic

Signals in detectors

Silicon trackers in high energy physics: a version of Moore's law

PN junctions as particle detectors

- If ionizing radiation interacts in depletion zone, current can flow to electrodes (analogous to gaseous detectors)
- Reverse bias is used to increase size of depletion zone (as large as several mm)
- Microstrip detectors
- Long thin strips provide good resolution in one direction
- Two crossed planes provide xy resolution
- Pixel detectors
- Compact in both dimensions for xy resolution in a single detector
- Very good spatial resolution (better than wire chambers) but more expensive and subject to radiation damage
- Often cooled to reduce noise
- Much denser than gaseous detectors

2.

3.

- ${ }^{\sim} 10^{4}$ ion pairs per ionizing particle event: low noise electronics necessary

Microstrip detectors

- Each strip provides precise resolution in 2 of 3 dimensions
- Produced with many strips per sensor
- Example: single sensor with 512 strips with $130 \mu \mathrm{~m}$ pitch
- Width chosen based on resolution required (balanced against number of readout channels)
- Thickness comparable to depletion width
- Length as long as is feasible for manufacturing high purity silicon (~10 cm)

The Fermi LAT

tracker

- Tracker is 1.5 radiation lengths total on axis (63% conversion efficiency)
- $73 \mathrm{~m}^{2}$ of active silicon
- 11.5 k sensors (silicon strip detectors)
- 0.9 M readout channels
- 18 xy silicon planes alternating with passive tungsten converter layers
- Front: 12 planes with $95 \mu \mathrm{~m}\left(0.03 \mathrm{X}_{0}\right)$ converter
- Back: 4 planes with $720 \mu \mathrm{~m}\left(0.18 \mathrm{X}_{0}\right)$ converter
- $400 \mu \mathrm{~m}$ silicon thickness
- $228 \mu \mathrm{~m}$ strip pitch
- 160 W power consumption (of 650 W total), compared to 1100 watt toaster

Scintillation light

- While collection of ionization is difficult in solids and liquids, scintillation light can be used instead as a proxy for charge collection
- Isotropic emission
- Depending on material, $\sim 100 x$ more photons than Cherenkov light
- Emitted at one or more spectral lines, not continuum
- Time scale of pulse is directly related to decay time of excited atom: short decay times are desirable
- Sometimes emitted in UV and one or more wavelength shifters (fluorescent material) are necessary to match material transparency and/or photo-detector sensitive band
- Wavelength shifters also have decay time, which is preferably short
- Depending on material, amount of light is roughly linear with deposited energy in ionization
- Large index of refraction (~1.5) promotes total internal reflection
- Scintillators useful for: calorimetry, spectroscopy, tracking, veto

Types of scintillators

- Recall radiation length scales with $(Z)^{-1}(Z+1)^{-1}$
- Organic solid (including plastic)
- Small Z (long radiation length)
- Less expensive
- Useful for charged particle tracking, calorimetry, veto
- Inorganic solid
- Large Z (short radiation length)
- More expensive
- Useful for X-ray and gamma ray detection and calorimetry
- Liquid
- Fluor (e.g. organic scintillator) dissolved in solvent/oil (useful for large neutrino detectors)
- Argon, xenon (useful for collecting light and charge: TPCs)
- Nitrogen (air)

Readout of (plastic) scintillators

Rely on total internal reflection and use light guide to carry scintillation light to photomultiplier
 short wavelength light to long wavelength)

Inorganic scintillators

Name*	Density	Emission λ $[\mathrm{nm}]$	Light yield [photons/MeV]	Decay time τ $[\mathrm{ns}]$	Radiation length [cm]
$\mathrm{NaI:Tl}$	3.67	410	40,000	230	2.59
BGO	7.14	480	4000	300	1.12
BaF_{2} (fast)	4.88	215	1500	<1	2.05
BaF_{2} (slow)	4.88	310	10,000	700	2.05
$\mathrm{CsI:Tl}^{\mathrm{CsF}}$	4.51	565	65,000	600	1.68
PbWO 4	4.11	390	2000	3	
$\mathrm{LSO}: \mathrm{Ce}$	8.28	480	200	10	0.89
$\mathrm{LuAP}: \mathrm{Ce}$	7.4	420	28,000	40	1.14
GSO:Ce	6.3	360	10,000	18	
LuPO	6.6	440	360	7500	60
YAP:Ce	5.37	370	13,000	24	1.38
LaBr:Ce	5.3	360	16,000	25	2.7

*The short names for the scintillators stand for the following chemical compounds: $\mathrm{BGO}=$ $\mathrm{Bi}_{4} \mathrm{Ge}_{3} \mathrm{O}_{12}, \mathrm{GSO}=\mathrm{Gd}_{2} \mathrm{SiO}_{5}, \mathrm{LSO}=\mathrm{Lu}_{2} \mathrm{SiO}_{5}, \mathrm{LuAP}=\mathrm{LuAlO}_{3}, \mathrm{YAP}=\mathrm{YAlO}_{3}$

- DAMA: Nal:TI
- Fermi Large Area Telescope calorimeter: CsI:TI
- Fermi Gamma-ray Bust monitor: Nal:TI (0.003 to 1 MeV) and BGO (0.15 to 30 MeV)
- CMS electromagnetic calorimeter: PWO

Calorimeters for particle detection

- Calorimetry: measuring energy of incident particle by containing entire shower and measuring its energy deposition
- Homogeneous calorimeters
- Can be segmented into blocks read out separately (hodoscopic), but fully active
- Segmentation provides position resolution for tracking incident particle trajectory
- Fine segmentation can measure 3D development of shower (e.g. in Fermi LAT)
- Sampling calorimeters
- For very large volumes (e.g. for hadronic calorimeters), too expensive to be entirely active
- Instead, alternate active with passive (e.g. lead or steel) layers
- Instead of containing entire energy deposition, shower profile is sampled and $X_{\text {max }}$ can be determined

Electromagnetic calorimeters

(a)

Scintillator block of ≈ 25
radiation lengths

- Typically small enough that they can be fully active rather than sampling
- Purpose is to identify and measure the energy (and trajectory) of gammas, electrons, and positrons
- Needs to be many radiation lengths long to contain full shower
- To fit in small volume, inorganic crystals (high density, short radiation length) can be used
- At accelerators: long, narrow crystals pointing toward interaction point
- Narrower than shower width: center of gravity determines incident position

Photomultiplier tube

- Each electron incident on a dynode produces d secondary electrons
- d typically 3-10
- For n dynode stages, gain $=d^{n}$, typically 10^{6} or greater to detect single photons
- "Electron optics" of dynode chain optimized for
- Good gain (favors more dynodes) and collection efficiency
- Good transit time and transit time variation (favors fewer dynodes)

Wide variety of PMT shapes and sizes

Useful references

- The Particle Data Book from the Particle Data Group
- Tavernier, Experimental Techniques in Nuclear and Particle Physics
- Leo, Techniques for Nuclear and Particle Physics Experiments
- Knoll, Radiation Detection and Measurement
- Perkins, Particle Astrophysics
- Green, The Physics of Particle Detectors
- Grupen \& Schwartz, Particle Detectors
- Ahmed, Physics \& Engineering of Radiation Detection
- Slides from a course I teach at UW-Madison, Experimental Methods in Nuclear, Particle, and Astro Physics) https://www.physics.wisc.edu/~justin/teaching/physics736

Conclusions

- Key processes for charged particles: ionization, bremsstrahlung, hadronic interactions, Cherenkov radiation
- Key processes for photons: photoelectric absorption, Compton scattering, pair production
- Key technologies: silicon trackers, scintillating calorimeters, photomultipliers
- Understanding the physical processes underlying particle detectors helps you understand their data
- The same physical processes explain the birth of a particle in an astrophysical source as well as its death in a particle detector

Additional slides

Inorganic scintillators

- Typically ionic crystal doped with luminescent atoms
- Ionizing radiation produces electron-hole pairs
- Instead of collecting the electrons, they are captured by luminescence centers, producing scintillation
- Crystal impurities and defects can trap electrons before they reach luminescence centers: pure crystals desirable
- Can have more than one decay time scale
- Two different lines (two lines from one dopant or two different dopants)
- Defects that retain charges for long time

Justin Example: CsI:Tl (cesium iodide doped with thallium)

Energy resolution of calorimeters

Homogeneous calorimeters

$$
\frac{\sigma\{E\}}{E}=\sqrt{\frac{a^{2}}{E[\mathrm{GeV}]}+b^{2}}
$$

- Energy-dependent contribution (a) from statistical fluctuations in number of scintillation photons detected (energy dependent because proportional to E)
- Energy-independent contribution (b) from non-uniformities in detector
- Typically a between 2% and $3 \%, b$ between 0.5% and 1%
- Example: CMS $a=3 \%, b=0.5 \%$

Sampling calorimeters

- Resolution worse and set by
- Hadronic shower physics
- $X_{\text {max }}$ fluctuations

Other useful topics I'm skipping

- Detector technologies: gaseous particle detectors (ion chambers, proportional counters, Geiger counters, spark chambers, wire chambers, drift chambers, time projection chambers), transition radiation, Cherenkov radiation
- Signal mechanisms: fluorescence, phosphorescence
- Scintillator calorimeters for MeV gamma rays
- Other photon detectors: PIN diodes, MAPMTs, APDs, SiPMs

Vocabulary of light production

- Scintillation (= radioluminescence)
- Production of a light flash by incidentionizing radiation
- Deposited energy from energetic particle ~ 1/E
- Low-energy depositions excite rather than ionize atoms
- De-excitation releases photons
- Present in many materials, efficient in some
- Fluorescence (= photoluminescence)
- Incident energy is light that is absorbed, rather than ionizing radiation
- Name for fluorescent material: fluor or wavelength shifter
- Phosphorescence
- Incident energy can be light or ionizing radiation, but long decay time scale (>1 ms)

Photoelectric absorption edges

- Electron binding energies in lead (keV): 88.0, 15.9, 15.2, 13.0, 3.9, 3.6.3.3.1, 2.6, 2.5

Three types of nuclear radiation

Pair production

Cherenkov radiation

- Due to polarization of medium, produced when a relativistic charged particle travels through a medium faster than the speed of light in the medium (c/n)
- Typically a negligible contribution to particle energy loss
- Very useful for detecting particles and measuring their direction, energy, or mass/identity
- Radiation emitted along a narrow cone of opening angle θ_{C} (can vary with wavelength):
- Radiation intensity scales with particle Z^{2}

$$
\cos \left(\theta_{c}\right)=\frac{(c / n) t}{v t}=\frac{c}{n v}
$$

- Spectrum of Cherenkov light increases with frequency (Frank-Tamm formula):

$$
\frac{d^{2} E}{d \hbar \omega \cdot d x}=\hbar \omega \frac{Z^{2} \alpha}{\hbar c}\left[1-\frac{c^{2}}{\text { ph }_{\text {sics }}^{2} \nu_{\text {ofp }}^{2}}\right] v>\frac{c}{n_{\text {ticle }}^{2}}
$$

~200 photons/cm in water

Particle range

- Greater energy loss results in a shorter range
- Given $\mathrm{dE} / \mathrm{dx}$ and E , can integrate to determine range
- Note this is the range considering ionization loss only
- Other interactions and particle lifetime must also be considered

Attenuation coefficient

(inverse of attenuation length)

Physics of Particle Detectors (MeV)

Example: calculation of shower max altitude for 10 TeV gamma ray

- Critical energy in air: $\mathrm{E}_{\text {crit }}=100 \mathrm{MeV}$
- Radiation length in air: $36 \mathrm{~g} / \mathrm{cm}^{2}$
- $x=$ total column depth along shower, measured from space toward ground
- $X=$ total column depth of atmosphere $\left(1030 \mathrm{~g} / \mathrm{cm}^{2}\right)$
- $\mathrm{H}=$ scale height of atmosphere, 6.5 km
- $h=$ height above sea level
- Atmosphere column depth model: $x=X \exp (-h / H)$
- Shower max occurs at $x=\ln \left(E_{0} / E_{\text {crit }}\right) / \ln 2=16.6$ radiation lengths $=615 \mathrm{~g} / \mathrm{cm}^{2}$
- Plugging in to atmosphere model, altitude of shower max is 3.4 km

Linearity of scintillator light yield

- Can be calibrated
- However, nonlinearity especially a challenge for nuclear gamma ray energy measurement
- A ~1 MeV gamma can pair produce, or photo-absorb, or Compton and then photo-absorb
- If response is nonlinear, detected scintillation light depends on interaction history of incident gamma evenforta fonstantincident gamma energy

Hadronic calorimeters

- Purpose is to measure energy (and trajectory) of hadrons (protons, neutrons, pions, kaons, ...)
- First hadronic interaction typically produces many pions, which produce electromagnetic sub-showers and outgoing hadrons can also interact again to continue hadronic shower
- Radiation length scales as $Z^{-1}(Z+1)^{-1}$:

$$
\frac{1}{X_{0}} \approx 4 \alpha r_{0}^{2} \frac{\rho N_{\mathrm{A}}}{A_{\mathrm{r}}} Z_{\mathrm{nucl}}\left(1+Z_{\mathrm{nucl}}\right) \ln \left(\frac{183}{\sqrt[3]{Z_{\mathrm{nucl}}}}\right)
$$

- Hadronic interaction length scales as $\mathrm{A}^{1 / 3} \sim Z^{1 / 3}$:

$$
\lambda=\frac{1}{N \sigma} \approx \frac{A^{1 / 3}}{\rho} \frac{1}{N_{A} 4 \times 10^{-26}} \approx \frac{A^{1 / 3}}{\rho} 35 \mathrm{~g} / \mathrm{cm}^{2}
$$

- At high $Z, \lambda \gg X_{0}$:

Element	Z	$\mathrm{X}_{0}(\mathrm{~cm})$	$\lambda(\mathrm{cm})$
Iron	26	1.76	16.8
Copper	29	1.43	15
Tungsten	74	0.35	9.6

justin vaneenbrorocke hadronic calorimeters typically sampling, not homogeneous

TRANSMISSION MODE PHOTOCATHODE

Quantum efficiency

- Quantum efficiency $=$ Fraction of photon absorption events that result in photoelectron emission by metal surface
- Function of wavelength for each material
- Choice of photocathode material determines QE as function of wavelength
- Typically peaks ~25\%

RstinHighıquantum efficiency devices now availablecup to ~35-40\% (more expensive)

Photomultiplier glass materials

- Glass often has trace radioactivity (potassium)
- For low-background experiments, special low-activity PMTs or silicon photodetectors can be used
- PMT window typically cuts off in UV
- Difficult/expensive to achieve good UV response
- Borosilicate glass passband: near IR to 300 nm
- Example challenge: xenon (for double beta decay and dark matter experiments) scintillation light is 175 nm

Minimum ionization loss

is $\sim 2 \mathrm{MeV} / \mathrm{cm}$ times the material density

Organic scintillators

- Organic crystals
- Expensive, not often used
- Organic liquids
- Organic scintillator dissolved in solvent
- Inexpensive per volume (useful for neutrino detectors)
- Plastic
- Polystyrene (commonly used)
- Polyvinyltoluene
- Can be made in arbitrary shapes and sizes
- Scintillate in UV, but short (few mm) absorption length
- One or two fluors mixed in material to shift wavelength (shifting is sometimes two-step process)

Example plastic scintillator

- Extruded polystyrene
- Two Fluors
- 1\% PPO: $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{NO}=2,5$-diphenyloxazole
- 0.03\% POPOP = 1,4-di(-5phenyl-2-oxazolyl)-benzene(0.03\%), used in liquids also
- Flours mixed into liquid at $200^{\circ} \mathrm{C}$
- Can be extruded up to 10 m long
- Channels (on surface) or hole (through volume) can be included for wavelength shifting fibers for readout
- Fabrication facility at Fermilab produced large volumes for
- Used for Double Chooz, Mu2e, MINOS, maybe IceCube

Conductors, insulators, and semiconductors

- Fermi energy
- Metal: no band gap, good conduction
- Insulator: large band gap, no electrons populate conduction band
- Semiconductor:small band gap, thermal tail of electrons populate conduction band

Doping

boron 5 \square 10.811	carbon 6 12.011	nitrogen 7 N 14.007
$\begin{gathered} \text { aluminium } \\ 13 \end{gathered}$	$\begin{gathered} \text { silicon } \\ 14 \end{gathered}$	$\begin{gathered} \text { phosphorus } \\ 15 \end{gathered}$
$\begin{aligned} & \Delta \\ & 26.982 \end{aligned}$	$\begin{array}{r} 8 \\ 28.086 \end{array}$	$\begin{gathered} D \\ 30.974 \end{gathered}$
$\begin{gathered} \text { gallium } \\ 31 \end{gathered}$	$\begin{aligned} & \text { germanium } \\ & 32 \end{aligned}$	$\begin{aligned} & \text { arsenic } \\ & 33 \end{aligned}$
		$A S$
69.723	72.61	74.922
$\begin{gathered} \text { indium } \\ 49 \end{gathered}$	tin 50	$\begin{gathered} \text { antimony } \\ 51 \end{gathered}$
		Sb
114.82		121.76

Pure Silicon

- Silicon nuclei

P-Type Silicon

Boron nucleus

Physics of Particle Detectors

PN junction

p-type
semiconductor region

The combining of electrons and holes depletes the holes in the p-region and the electrons in the n-regioin near the junction.

n-type
semiconductor region

- electron
- hole
Θ negative ion from filled hole
\oplus positive ion from removed electron
- One crystal with p-type and n-type regions and interface between them
- Near interface, electrons and holes diffuse toward one another, swapping positions
- This halts when significant charge difference accumulates
- A voltage is naturally established ($\sim 0.6-0.7 \mathrm{~V}$)
- Depletion region near interface now has no mobile charge carriers

