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Overview W

Estimating the GeV Emission of Millisecond Pulsars in Dwarf
Spheroidal Galaxies

e Authors: M. Winter, G. Zaharijas, K. Bechtol, & J. Vandenbroucke
o Category Il LAT paper

e Target journal: ApJL

e Timeline: submit for publication in mid June

e Link: https://confluence.slac.stanford.edu/display/
~gzah/MSPs+in+dSphs+Category+III+paper
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Dwarf Spheroidal Satellite Galaxies

e Dwarf elliptical galaxies of near-spherical shape that lack a nucleus.
Characterized by low luminosity and surface brightness
Old stellar systems w/ stellar populations ranging from 1-10 Gyrs
Stellar masses ranging from 102 — 10" My, (M. mw = 10°M)
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Fermi-LAT Surveys of the Dwarfs \/

e LAT surveys of the dSphs have not detected any significant DM

annihilation signal
e Sets world-leading constraints on the DM annihilation cross section
e dSphs are among the most important targets for indirect DM searches

for the foreseeable future
o If a y-ray excess exists, it will eventually be detectable: “Super” Fermi

e This assumes dSphs have a negligible astrophysical background

M Known MW dSph
AO DES dSph Candidates

‘ Non-DES dSph Candidates
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Are the Dwarfs Really Astrophysically Clean? \/

o LAT has detected a significant number of y-ray emitting MSPs in
both the field of the MW and in MW globular clusters
e Concern: Could there be an MSP population in the dwarfs?

MW field environment is similar to dSph stellar environment
Stellar population/age in GCs is very similar to the dwarf population
X-ray observations of dwarfs detect MSP progenitor system (LMXB)

LAT Detected MSPs
T T

e 107 107 0% 0% T
L (erg-s™)

How to estimate the dwarf MSP population using only MW observations?
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Millisecond Pulsar X-ray Binary Connection Y

e Use the progenitor system: MSPs are believed to be an advanced
evolutionary stage of low-mass x-ray binaries (LMXBs)
e LMXBs, and by extension MSPs, have two distinct formation
channels: dynamical and primordial
Dynamical: result of two-body interactions in high p,, high I
environments, such as GCs
Primordial: formation from primordial binaries (i.e. when galaxy was
formed) in low p,, low [ environments
o In the fields of galaxies, where primordial formation is dominant, the
number of LMXBs has been found to scale with the stellar mass of
the host galaxy (Gilfanov 2004)

e Dwarfs have “field-like” stellar environment = primordial formation!

e Claim: If LMXBs scale with stellar mass, then MSPs can reasonably
be expected to as well
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Estimating the Dwarf MSP Population w/ Fermi Data

e Approach:
Perform a monte carlo incompleteness correction on the LAT MSP
survey
MCMC fit to the corrected MSP sample to determine MSP ~-ray
luminosity function (LF)
Scale the normalized LF to the stellar mass of each dwarf
Estimate the «-ray flux for each dwarf
Compare estimated flux to LAT threshold

e Sources of Uncertainty:

Statistical: LAT detection shot noise
Systematic: MSP distances and completeness correction

2PC Distances y Upper Limit Completeness
ATNF Distances Lower Limit Completeness

Poisson fluctuations in expected flux from dwarfs

June 8, 2016 - Fermi Summer School M. Winter 7



Fermi-LAT MSP sample \/

e Sample: 67 LAT detected field MSPs (2PC + recent publications)

Excluding MSPs without distance estimates and those know to reside
within globular clusters

Luminosity calculated for 2PC and ATNF distances:

L, = 47TF7D2, where F, is LAT reported y-energy flux

- --- [ 2PC Distances
C It ATNF Distances

Counts
o

10! 107 10% 10% 10% 10%
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Monte Carlo Incompleteness Correction Y

e Assumed spatial distribution: Ry = 4.0 kpc and z5 = 1.0 kpc
(Grégoire & Knodlseder, 2013)

p(R,z) ox el=R/Ro)g(=Izl/20)

e Account for changing LAT Flux threshold as a function of b (2PC).
The threshold detection distance as a function of luminosity is then,

Dr(L,) =1kpc x y/Ly/LT where Ly =4nFr(b)D?

Fermi Flux Sensitivity
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Incompleteness Correction Results Y

e Final result based on 107 simulated MSPs
035

Largely complete for luminosities 103% erg - s~1 and above
Predicting ~ 10° MSPs in the MW field w/ L, > 103!erg - s71

Vary Ry and Zp to account for uncertainty in spatial distribution.

10"

Estimated Completeness vs 1-Ray Luminosity
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MSP Luminosity Function

o Perform MCMC fit to LAT MSP sample to determine the LF
Larger syst. unc. at low luminosities due to completeness correction

Peak MSPs emission at luminosities ~= 1033erg - s~!
10%
= Best fit LF
ical uncertainty
= = Systematic uncertainty
i LAT MSPs: 2PC dist. w/ mean completencss
10% RSO
é 107
s
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31
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Assuming broken power law: —— = g _ _ vz
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LF Comparison

e Comparison to LF constructed by Hooper and Mohlabeng, 2015

e Hooper LF breaks at slightly higher luminosity

o LFs are largely consistent overall
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Figure : LF determined in this study
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Poisson Variations - Stellar Mass Dependence Y

e LAT flux threshold > 500 MeV ~ 107%% ph cm=2 s71

o Width of flux pdf scales with stellar mass

e Larger variations in low stellar mass dSphs because small number of
expected MSPs

I Segue 1
10°} @B Draco

B Sculptor
I Fornax

Counts (arb. units)

10-15 101 103 1012 T0-1
Flux > 500 MeV (ph cm™2s71)
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Estimated MSP Flux From the Dwarfs

Galaxy D(kpc) logyo(M./Mp) Flux > 500 MeV (ph cm~2

7
10g10(\1[%/5—]) Ref.
Mean Stat. Syst. Pois.

Segue 1 23.0 388 3o ooy t‘f B x10-15 19.5+0.29 L5 |
Tucana 111 25.0 770 1% g og = x10~15 19.3 1
Ursa Major II 32.0 318 o r--4 x10~14 19.3+0.28 2,5
Reticulum I 32.0 1.52 x10714 19.3 36
Willman 1 38.0 4.19 x10~18 19.1+0.31 1,5
Coma Berenices ~ 44.0 1.50 x10714 19.0£0.25 2,5
Tucana IV 48.0 5.75 x10~18 18.7 4
Grus II 53.0 7.30 x10718 18.7 4
Tucana I 58.0 5.44 x10~15 18.8 36
Bootes I 66.0 4.01 x10~14 18.2+0.22 1,5
Indus I 69.0 1.01 x10715 18.3 36
Ursa Minor 76.0 5.63 x10~13 18.8 +£0.19 2,5
[ Draco 76.0 3.39 x10~13 18.8+0.16 2,5
culptor 86.0 319 x10-T 186£0.18 25
Sextans 86.0 5.66 x10-13 18.4+0.27 2,5
Horologium 1 87.0 1.92 x10~15 184 36
Reticulum III 92.0 1.43 x10~18 18.2 4
Phoenix 1T 95.0 1.89 x10~18 184 3,6
Ursa Major 1 97.0 1.23 x10~14 18.3+0.24 2,5
Carina, 105.0 2.82 x10~13 18.1+0.23 1,5
Hercules 132.0 1.29 x10~14 18.1 +0.25 2,5
Fornax 147.0 6.88 x10~12 18.2+0.21 2,5
Leo IV 154.0 217 x10~T 17.9£0.28 25
Canes Venatici II  160.0 1.88 x10~13 17.940.25 2,5
Columba I 182.0 113 x10~15 17.6 4
Indus II 214.0 6.48 x10~16 174 4
Canes Venatici I~ 218.0 3.85 x10714 17.7+£0.26 2,5
Leo II 233.0 131 x10-13 17.6 +£0.18 2,5
Leo I 254.0 4.60 59 x10-13 17.7+0.18 2,5
Eridanus 11 330.0 1.62 o8 x10718 17.3 36

REFERENCES, — (1) Wolf et al. (2010), (2) Klrby et al. (2013), (3) Bechtol et al. (2015), (4) Drlica-Wagner et al. (2015a), (5) Ackermann
et al. (2015), (6) Drlica-Wagner et al. (2015b)
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Summary Figure - Flux vs J-Factor
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Conclusions W

e Results:

Our results suggest that the dwarfs, especially those with higher stellar
masses, are likely to host a small MSP population

Most massive classical dwarfs (For, Scl,... ) are within an order of
magnitude of LAT flux threshold

Estimated emission in ultra-faints (Seg 1, Ret Il,... ) is well below
threshold

Most important dwarfs, i.e. ultra-faints w/ largest J-factors, expected
to be safe targets for future DM searches

e Status and Final Steps:

Calculations are effectively complete
Put finishing touches on plot and tables
Finalize draft

Submit in mid June
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Extra Slide - LMXBs as M., Indicators W

e Gilfanov, 2004 reports relationship between Nx and M,
o Nx/M, ~ 166.3 + 20.5 src (Lx > 10%7 erg/s) per 101 M,
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Extra Slide - LMXBs as M., Indicators W

Figure : Chandra: X-ray point sources in Centaurus A (Kraft et al. 2001)
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