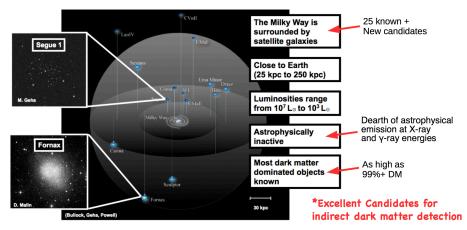
Millisecond Pulsars in Dwarf Spheroidal Galaxies

Miles Winter

Advisor: Justin Vandenbroucke

June 8, 2016 - Fermi Summer School

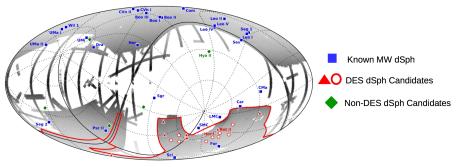


Estimating the GeV Emission of Millisecond Pulsars in Dwarf Spheroidal Galaxies

- Authors: M. Winter, G. Zaharijas, K. Bechtol, & J. Vandenbroucke
- Category III LAT paper
- Target journal: ApJL
- Timeline: submit for publication in mid June
- Link: https://confluence.slac.stanford.edu/display/ ~gzah/MSPs+in+dSphs+Category+III+paper

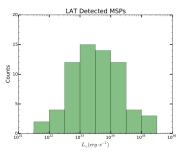
Dwarf Spheroidal Satellite Galaxies

- Dwarf elliptical galaxies of near-spherical shape that lack a nucleus.
 - Characterized by low luminosity and surface brightness
 - Old stellar systems w/ stellar populations ranging from 1-10 Gyrs
 - Stellar masses ranging from $10^2 10^7 M_{\odot} (M_{*,MW} = 10^{10} M_{\odot})$



June 8, 2016 - Fermi Summer School

Fermi-LAT Surveys of the Dwarfs



- LAT surveys of the dSphs have not detected any significant DM annihilation signal
- Sets world-leading constraints on the DM annihilation cross section
- dSphs are among the most important targets for indirect DM searches for the foreseeable future
 - If a γ -ray excess exists, it will eventually be detectable: "Super" Fermi
 - This assumes dSphs have a negligible astrophysical background

- LAT has detected a significant number of $\gamma\text{-ray}$ emitting MSPs in both the field of the MW and in MW globular clusters
- Concern: Could there be an MSP population in the dwarfs?
 - MW field environment is similar to dSph stellar environment
 - Stellar population/age in GCs is very similar to the dwarf population
 - X-ray observations of dwarfs detect MSP progenitor system (LMXB)

How to estimate the dwarf MSP population using only MW observations?

- Use the progenitor system: MSPs are believed to be an advanced evolutionary stage of low-mass x-ray binaries (LMXBs)
- LMXBs, and by extension MSPs, have two distinct formation channels: dynamical and primordial
 - Dynamical: result of two-body interactions in high $\rho_*,$ high Γ environments, such as GCs
 - Primordial: formation from primordial binaries (i.e. when galaxy was formed) in low ρ_* , low Γ environments
- In the fields of galaxies, where primordial formation is dominant, the number of LMXBs has been found to scale with the stellar mass of the host galaxy (Gilfanov 2004)
- Dwarfs have "field-like" stellar environment \Rightarrow primordial formation!
- Claim: If LMXBs scale with stellar mass, then MSPs can reasonably be expected to as well

Estimating the Dwarf MSP Population w/ Fermi Data

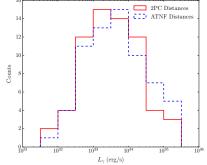
• Approach:

- Perform a monte carlo incompleteness correction on the LAT MSP survey
- MCMC fit to the corrected MSP sample to determine MSP γ -ray luminosity function (LF)
- Scale the normalized LF to the stellar mass of each dwarf
- Estimate the γ -ray flux for each dwarf
- Compare estimated flux to LAT threshold

• Sources of Uncertainty:

- Statistical: LAT detection shot noise
- Systematic: MSP distances and completeness correction

$$\left\{\begin{array}{c} 2\mathsf{PC} \ \mathsf{Distances} \\ \mathsf{ATNF} \ \mathsf{Distances} \end{array}\right\} \times \left\{\begin{array}{c} \mathsf{Upper} \ \mathsf{Limit} \ \mathsf{Completeness} \\ \mathsf{Lower} \ \mathsf{Limit} \ \mathsf{Completeness} \end{array}\right.$$


· Poisson fluctuations in expected flux from dwarfs

Fermi-LAT MSP sample

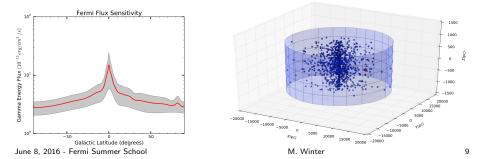
- Sample: 67 LAT detected field MSPs (2PC + recent publications)
 - Excluding MSPs without distance estimates and those know to reside within globular clusters
 - Luminosity calculated for 2PC and ATNF distances:

 $L_{\gamma}=4\pi F_{\gamma}D^2,~~{
m where}~F_{\gamma}~{
m is}~{
m LAT}~{
m reported}~\gamma{
m -energy}~{
m flux}$

June 8, 2016 - Fermi Summer School

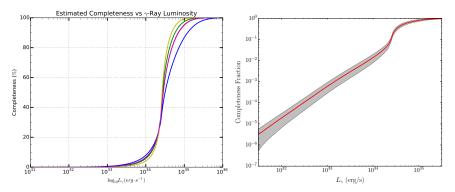
M. Winter

Monte Carlo Incompleteness Correction



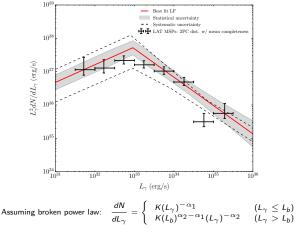
• Assumed spatial distribution: $R_0 = 4.0$ kpc and $z_0 = 1.0$ kpc (Grégoire & Knödlseder, 2013)

$$o(R,z) \propto e^{(-R/R_0)} e^{(-|z|/z_0)}$$


• Account for changing LAT Flux threshold as a function of *b* (2PC). The threshold detection distance as a function of luminosity is then,

$$D_{\mathcal{T}}(L_{\gamma}) = 1 \; ext{kpc} imes \sqrt{L_{\gamma}/L_{\mathcal{T}}} \quad ext{where} \quad L_{\mathcal{T}} = 4\pi F_{\mathcal{T}}(b) D^2$$

- Final result based on 10⁷ simulated MSPs
- Largely complete for luminosities $10^{35}\ \text{erg}\cdot\text{s}^{-1}$ and above
- Predicting $\approx 10^5$ MSPs in the MW field w/ $L_{\gamma} > 10^{31} \rm erg \cdot s^{-1}$
- Vary R_0 and Z_0 to account for uncertainty in spatial distribution.


June 8, 2016 - Fermi Summer School

MSP Luminosity Function

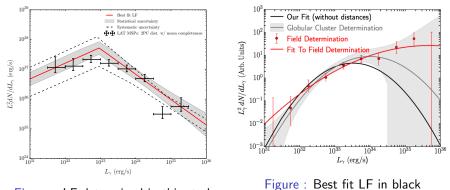
- Perform MCMC fit to LAT MSP sample to determine the LF
 - · Larger syst. unc. at low luminosities due to completeness correction
 - Peak MSPs emission at luminosities $pprox 10^{33} \mathrm{erg} \cdot \mathrm{s}^{-1}$

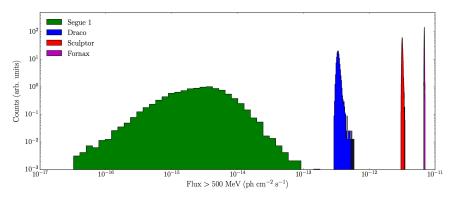
June 8, 2016 - Fermi Summer School

M. Winter

LF Comparison

- Comparison to LF constructed by Hooper and Mohlabeng, 2015
- Hooper LF breaks at slightly higher luminosity
- LFs are largely consistent overall




Figure : LF determined in this study

Poisson Variations - Stellar Mass Dependence

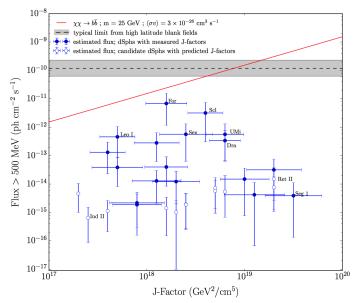
Ŵ

- LAT flux threshold $> 500~\text{MeV} \approx 10^{-10}~\text{ph cm}^{-2}~\text{s}^{-1}$
- Width of flux pdf scales with stellar mass
- Larger variations in low stellar mass dSphs because small number of expected MSPs

June 8, 2016 - Fermi Summer School

Estimated MSP Flux From the Dwarfs

Galaxy	D(kpc)	$\log_{10}(M_*/M_{\odot})$	$Flux > 500 \text{ MeV} (ph \text{ cm}^{-2} \text{ s}^{-1})$						$\log_{10}(J\left[\frac{GeV^2}{cm^5}\right])$	Ref.
			Mean	Stat.	Syst.	Pois.	Total		fem. 1.	
Segue 1	23.0	$2.53^{+0.38}_{-0.20}$	3.88	$^{+1.35}_{-0.89}$	$^{+4.67}_{-2.82}$ $^{+9.26}$	$^{+4.03}_{-1.52}$ $^{+5.63}$	$^{+7.17}_{-3.77}$	$\times 10^{-15}$	19.5 ± 0.29	1,5
Tucana III	25.0	$2.90^{+0.05}_{-0.05}$	7.70	-0.89 +2.68 -1.77			+11.2	$\times 10^{-15}$	19.3	4
Ursa Major II	32.0	$2.90_{-0.05}$ $3.73_{-0.23}^{+0.23}$	3.18	+1:77 -0.73	$^{-5.59}_{+3.82}$ $^{-2.30}_{+1.83}$	$^{-2.93}_{+1.03}$	$^{-6.61}_{+4.44}$ $^{-3.04}_{+2.03}$	$\times 10^{-14}$	19.3 ± 0.28	2,5
Reticulum II	32.0		1.52	$^{-0.73}_{+0.53}$ $^{-0.35}_{+1.46}$	+1.83 -1.10 +5.05	$^{-0.77}_{+0.68}$	+2.03 -1.25	$\times 10^{-14}$	19.3	3,6
Willman I	38.0		4.19			$^{+0.46}_{+2.74}$	$^{-1.25}_{+7.02}$	$\times 10^{-15}$	19.1 ± 0.31	1,5
Coma Berenices	44.0	$3.68^{+0.22}_{-0.22}$	1.50	$^{-0.97}_{+0.52}$	$^{-3.04}_{+1.80}$	$^{-1.53}_{+0.51}$	$^{-4.13}_{+2.09}_{-1.42}$	$\times 10^{-14}$	19.0 ± 0.25	2,5
Tucana IV	48.0	$3.34^{+0.08}_{-0.06}$	5.75	$^{-0.35}_{+2.01}$	$^{-1.09}_{+6.92}$ $^{-4.17}$	$^{-0.38}_{+2.71}$	$^{-1.42}_{+7.77}$	$\times 10^{-15}$	18.7	4
Grus II	53.0	$3.53^{+0.04}_{-0.05}$	7.30	$^{-1.33}_{+2.55}$	$^{-4.17}_{+8.79}$	$^{-1.78}_{+2.90}$ $^{-2.03}$	-4.79 + 9.63 - 5.98	$\times 10^{-15}$	18.7	4
Tucana II	58.0	$3.48^{+1.01}_{-0.14}$	5.44	$^{-1.68}_{+1.90}$	$^{-5.30}_{+6.54}$ $^{-3.95}$	$^{-2.03}_{+2.20}$ $^{-1.53}$	-5.98 + 14.5 - 4.75	$\times 10^{-15}$	18.8	3,6
Bootes I	66.0	$4.45_{-0.06}^{+0.09}$	4.01	$^{-1.25}_{+1.37}$	$^{-3.95}_{+4.83}$ $^{-2.91}$	$^{-1.53}_{+0.63}$ $^{-0.54}$	$^{-4.75}_{+5.12}$	$\times 10^{-14}$	18.2 ± 0.22	1,5
Indus I	69.0	$2.90^{+0.22}_{-0.22}$	1.01	$^{-0.90}_{+0.35}$	$^{-2.91}_{+1.22}$	$^{-0.54}_{+0.73}$	-3.14 + 1.55 - 1.00	$\times 10^{-15}$	18.3	3,6
Ursa Minor	76.0	$2.90_{-0.22}^{+0.20}$ $5.73_{-0.20}^{+0.20}$	5.63	$^{-0.23}_{+1.96}$	$^{-0.73}_{+6.78}$	$^{-0.38}_{+0.25}$	$^{-1.00}_{+7.52}$ -5.02	$\times 10^{-13}$	18.8 ± 0.19	2,5
Draco	76.0	$5.51^{+0.10}_{-0.10}$	3.39	$^{+1.18}_{-0.78}$	$^{+4.08}_{-2.46}$ $^{+3.83}$	+0.19 -0.18	+4.33 -2.70	$\times 10^{-13}$	18.8 ± 0.16	2,5
Sculptor	86.0	$6.59^{+0.21}_{-0.21}$	3.19	+1.11	+3.83 -2.31	-0.18 +0.05 -0.05	+4.28	$\times 10^{-12}$	18.6 ± 0.18	2,5
Sextans	86.0	$5.84^{+0.20}_{-0.20}$	5.66	$^{-0.73}_{+1.98}$	$^{-2.31}_{+6.82}$ -4.11	$^{-0.05}_{+0.23}$	-2.87 +7.57 -5.05	$\times 10^{-13}$	18.4 ± 0.27	2,5
Horologium I	87.0	$a_{aa} + 0.25$	1.92	$^{-1.31}_{+0.67}$	$^{-4.11}_{+2.31}$ $^{-1.39}_{+1.72}$	$^{-0.22}_{+0.87}$	$^{-5.05}_{+2.79}$ $^{-1.67}_{+1.97}$	$\times 10^{-15}$	18.4	3,6
Reticulum III	92.0	$3.38_{-0.13}$ $3.30_{-0.15}^{+0.13}$	1.43	$^{-0.44}_{+0.50}$ $^{-0.33}_{+0.66}$	$^{+1.72}_{-1.04}$ $^{+2.28}_{+2.28}$	$^{-0.58}_{+0.70}$ $^{-0.45}_{+0.81}$	$^{+1.97}_{-1.28}$ $^{+2.64}$	$\times 10^{-15}$	18.2	4
Phoenix II	95.0	$3.45^{+0.19}$	1.89		$^{+2.28}_{-1.37}$ $^{+1.48}_{+1.48}$	$^{+0.81}_{-0.55}$ $^{+0.24}$	+2.64 -1.61	$\times 10^{-15}$	18.4	3,6
Ursa Major I	97.0	$4.28^{+0.13}_{-0.13}$	1.23	$^{-0.44}_{+0.43}$			$^{-1.61}_{+1.60}$	$\times 10^{-14}$	18.3 ± 0.24	2,5
Carina	105.0	$5.63^{+0.11}_{-0.09}$	2.82	$^{-0.28}_{+0.82}$ $^{-0.54}$	$^{-0.89}_{+3.39}$	$^{-0.20}_{+0.13}$	$^{-1.02}_{+3.56}$	$\times 10^{-13}$	18.1 ± 0.23	1,5
Hercules	132.0	$4.57_{-0.14}^{+0.14}$	1.29	-0.54 + 0.45 - 0.30	-2.04 + 1.55 - 0.94	-0.12 + 0.19 - 0.16	$^{-2.20}_{+1.68}$	$\times 10^{-14}$	18.1 ± 0.25	2,5
Fornax	147.0	$7.39^{+0.14}_{-0.14}$	6.88	$^{+2.40}_{-1.59}$	$+8.28 \\ -4.99$	$+0.05 \\ -0.05$	$^{+8.90}_{-5.69}_{+2.88}$	$\times 10^{-12}$	18.2 ± 0.21	2,5
Leo IV	154.0	$3.93^{+0.15}_{-0.15}$	2.17	$^{+0.76}_{-0.50}$ $^{+0.66}$	$^{+2.62}_{-1.58}$ $^{+2.26}$	$^{+0.57}_{-0.45}$ $^{+0.53}$	$^{+2.88}_{-1.87}$ $^{+2.56}$	$\times 10^{-15}$	17.9 ± 0.28	2,5
Canes Venatici II	160.0	$3.90^{+0.20}_{-0.20}$	1.88		+2.26 -1.36		+2.56 -1.72	$\times 10^{-15}$	17.9 ± 0.25	2,5
Columba I	182.0	$3.79^{+0.13}_{-0.07}$	1.13	$^{-0.43}_{+0.39}$	$^{-1.36}_{+1.36}$	$^{-0.41}_{+0.35}$ $^{-0.26}$	$^{-1.72}_{+1.49}_{-0.92}$	$\times 10^{-15}$	17.6	4
Indus II	214.0	$3.69^{+0.16}_{-0.14}$	6.48	$^{-0.26}_{+2.26}$	$^{-0.82}_{+7.80}$	$^{-0.26}_{+2.19}$ $^{-1.62}$	-0.92 + 8.74 - 5.59	$\times 10^{-16}$	17.4	4
Canes Venatici I	218.0	$5.48^{+0.09}_{-0.09}$	3.85	$^{-1.49}_{+1.34}$	-4.70 + 4.63 - 2.79	$^{-1.62}_{+0.22}$ $^{-0.21}$	$-5.59 \\ +4.89 \\ -3.04$	$\times 10^{-14}$	17.7 ± 0.26	2,5
Leo II	233.0	c 07+0.13	1.31	$^{-0.89}_{+0.46}$	$^{-2.79}_{+1.58}$ $^{-0.95}$	$^{-0.21}_{+0.04}$	-3.04 + 1.69 - 1.07	$\times 10^{-13}$	17.6 ± 0.18	2,5
Leo I	254.0	$6.69^{+0.13}_{-0.13}$	4.60	$^{-0.30}_{+1.60}$	$^{-0.95}_{+5.53}$ $^{-3.34}$	$^{-0.04}_{+0.07}$ $^{-0.07}_{-0.07}$	$^{-1.07}_{+5.92}$ $^{-3.76}$	$\times 10^{-13}$	17.7 ± 0.18	2,5
Eridanus II	330.0	$4.92^{+0.09}_{-0.07}$	4.62	$^{-1.06}_{+1.61}$ $^{-1.07}$	$^{-3.34}_{+5.57}$ $^{-3.36}$	$^{+0.47}_{-0.42}$	$^{-3.76}_{+5.89}$ $^{-3.63}$	$\times 10^{-15}$	17.3	3,6


REFERENCES. — (1) Wolf et al. (2010), (2) Kirby et al. (2013), (3) Bechtol et al. (2015), (4) Drlica-Wagner et al. (2015a), (5) Ackermann et al. (2015b) (6) Drlica-Wagner et al. (2015b)

June 8, 2016 - Fermi Summer School

M. Winter

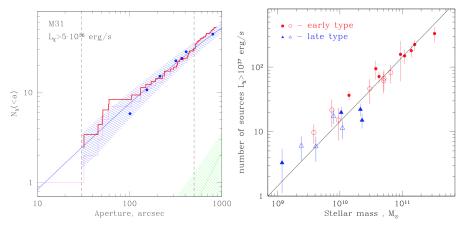
Summary Figure - Flux vs J-Factor

June 8, 2016 - Fermi Summer School

Conclusions

• Results:

- Our results suggest that the dwarfs, especially those with higher stellar masses, are likely to host a small MSP population
- Most massive classical dwarfs (For, Scl,...) are within an order of magnitude of LAT flux threshold
- Estimated emission in ultra-faints (Seg 1, Ret II,...) is well below threshold
- Most important dwarfs, i.e. ultra-faints w/ largest J-factors, expected to be safe targets for future DM searches


• Status and Final Steps:

- Calculations are effectively complete
- Put finishing touches on plot and tables
- Finalize draft
- Submit in mid June

Extra Slide - LMXBs as M_* Indicators

W

- Gilfanov, 2004 reports relationship between N_X and M_*
 - $N_X/M_* pprox 166.3 \pm 20.5 ~{
 m src}~(L_X > 10^{37}~{
 m erg/s})$ per $10^{11}M_{\odot}$

Figure : N_X (red) and near-infrared K-band (pink) growth curves

June 8, 2016 - Fermi Summer School

Figure : Number of X-ray Sources per Stellar Mass

Extra Slide - LMXBs as M_* Indicators

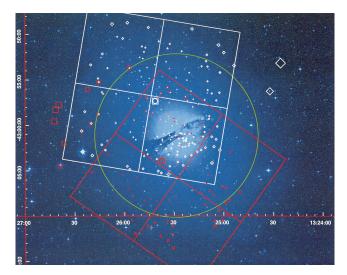


Figure : Chandra: X-ray point sources in Centaurus A (Kraft et al. 2001)