

Search for Neutrinos with ANTARES

BLAZARS AS POTENTIAL HIGH-ENERGY NEUTRINO SOURCES

Michael Kreter, Clancy James, Thomas Eberl, Matthias Kadler, Cornelia Müller

Fermi summer school Lewes Delaware 2016

イロト イポト イモト イモト

EVIDENCE FOR A HIGH-ENERGY EXTRATERRESTRIAL NEUTRINO SIGNAL

• What are the sources for the IceCube Neutrino Signal?

WHAT ARE POTENTIAL SOURCES OF EXTRATERRESTRIAL NEUTRINOS?

Search for Neutrinos with ANTARES

Starburst galaxies and AGN remain as potential source candidates as shown in:

・ロト ・ (日) ・ (日) ・ (日) ・ 日)

- Krauß et al. 2014
- Padovani et al. 2016
- Waxman 2015

THE TANAMI PROGRAM

Search for Neutrinos with ANTARES

• Multiwavelength Monitoring of \sim 90 AGN Jets South of $\delta < -30^\circ$

• Includes the radio- and γ -ray brightest AGN in the IceCube PeV neutrino fields

イロト イポト イヨト イヨト

WHICH ARE THE MOST PROMISING SOURCES? Pion Photoproduction:

Maximum Neutrino Output:

$$F_{\gamma} = \frac{1}{3}F_{\pi} + \frac{1}{4} \cdot \frac{2}{3}F_{\pi}\frac{1}{2}F_{\pi}$$
$$F_{\nu} = \frac{2}{3} \cdot \frac{3}{4}F_{\pi} = \frac{1}{2}F_{\pi}$$
$$F_{\gamma} = F_{\nu}$$

• See Kadler, et al. 2016, arXiv:1602.02012

・ロット (雪) (日) (日) (日)

NEUTRINO DETECTION

- Indirect detection via secondary particles (µ or e)
- Resulting particle emits Cherenkov light
- Cherenkov light is finally detected by an array of light sensors.

Credit: Ageron et al. 2011

NEUTRINO DETECTION

Search for Neutrinos with ANTARES

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

THE ANTARES DETECTOR:

- located in 2500 m depth
- 12 vertical detection lines (a $\approx 450\,\text{m})$
- 885 optical modules (OMs)
- 25 storeys per line (a 3 OMs)

TIME CORRELATED ANALYSIS

- Select sources which are promising in F_γ of the southern Sky
- Unbinned Maximum likelihood analysis:

$$L(n_s) = \prod_{i=1}^{N} \left[\frac{n_s}{N} S_i + (1 - \frac{n_s}{N}) B_i \right]$$

 $\mathit{n_s}$ unknown contribution of the signal events

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ・ つへぐ

- N number of events
- S_i signal probability density
- B_i background probability density

TIME CORRELATED ANALYSIS

Maximize the likelihood of the data

$$L(n_s) = \prod_{i=1}^{N} \left[\frac{n_s}{N} S_i + (1 - \frac{n_s}{N}) B_i \right]$$

$$S_i = N_i(\alpha) \times T_i(t) \times E_i^s$$
$$B_i = E_i^b$$

- $N_i(\alpha)$ direction dependent term
- E_i^s or E_i^b energy dependent term
- $T_i(t)$ time dependent term

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ うへぐ

DISCOVERY POTENTIAL

Probability for 5 σ discovery:

 \Rightarrow Best result for using γ and ν correlation

SUMMARY

- Integrated flux of FSRQs can explain the IceCube PeV signal Kadler, et al. 2016, arXiv:1602.02012
- Major number of point source analysis are in time integrated mode
 - \Rightarrow Time correlation between γ and ν increases detection probability
- Application to TANAMI flaring blazar sample in preparation

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

イロト 不得 トイヨト イヨト 二日

Search for Neutrinos with ANTARES

Backup

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 臣 のへぐ

NEUTRINO PRODUCTION IN AGN JETS

Search for Neutrinos with ANTARES

Lepto-hadronic acceleration model:

 $p + nucleus \rightarrow \pi + X$ $(\pi = \pi^{\pm}, \pi^{0})$ $p + \gamma \rightarrow \Delta^{+} \rightarrow \begin{cases} \pi^{0} + p \\ \pi^{+} + n. \end{cases}$

Credit: Katz & Spiering 2012

イロト イクト イヨト イヨト 二日

NEUTRINO PRODUCTION IN AGN JETS

The resulting pions further decay into:

Credit: Katz & Spiering 2012

TANAMI BLAZARS IN THE FIRST TWO PEV-NEUTRINO FIELDS

Search for Neutrinos with ANTARES

• Maximum-possible neutrino flux from blazars can explain observed PeV events

But:

• No individual source bright enough for a direct association

Source	$F_{\gamma}({\rm erg}{\rm cm}^{-2}{\rm s}^{-1})$	events
0235-618	$(1.0^{+0.5}_{-0.5}) \times 10^{-10}$	$0.19^{+0.04}_{-0.04}$
0302-623	$(3.4^{+0.7}_{-0.7}) \times 10^{-11}$	$0.06^{+0.01}_{-0.01}$
0308-611	$(7.5^{+2.9}_{-2.9}) \times 10^{-11}$	$0.14^{+0.05}_{-0.05}$
1653-329	$(4.5^{+0.5}_{-0.5}) \times 10^{-10}$	$0.86\substack{+0.10\\-0.10}$
1714-336	$\left(2.4^{+0.5}_{-0.6}\right) \times 10^{-10}$	$0.46^{+0.10}_{-0.12}$
1759-396	$(1.2^{+0.3}_{-0.2}) \times 10^{-10}$	$0.23^{+0.50}_{-0.40}$
Total		1.9 ± 0.4

・ロト ・ (日) ・ (日) ・ (日) ・ 日)

16 / 12

BACKGROUND SOURCES

- Atmospheric background
- Optical background
 - ⁴⁰K decay
 - bioluminescent organisms

⇒ Produce MC that models highly variable environmental conditions in the deep Sea (Run by Run MC)

Search for Neutrinos with ANTARES

Positional information $N_i(\alpha)$

- 1 Position of source in equatorial coordinates
- 2 Define 5 deg search cone around the source
- $\Rightarrow \alpha$: Angle between an event and the center of the cone

Method

Search for Neutrinos with ANTARES

Positional information $N_i(\alpha)$

- signal case: Take normalized hight of this histogram
- background case: Take angle from uniform distribution $\propto \sin(\alpha)$

Method

Search for Neutrinos with ANTARES

Energy information E_i

- x-axes: energy of muon
- y-axes: reconstructed energy of muon

◆□▶ ◆□▶ ◆ ミ ▶ ◆ ミ → ● ● ● ● ●

Method

Search for Neutrinos with ANTARES

イロト イポト イヨト イヨト

- signal case: Choose time from Lightcurve
- background case: Choose time randomly

Test Statistic

Test Statistic ΗD Entries 1e+07 0.01205 Mean number of generated events 10^{-1} 10^{-1} 10^{-1} 10^{-1} RMS 0.1252 Test Statistic for PKS2204-540 lambda > -5.4 ound only nd + 1 expected signal background + 3 expected signal 10² 10 10 15 20 25 30 35 40 0 5 values of the Test Statistic D

$$D = 2Log\left[\frac{L(\hat{n}_s)}{L(n_s=0)}\right]$$
(1)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

DATA MC COMPARISON FOR RBRMC

Data MC comparison for PKS 1716-771

・ロト ・ (日) ・ (日) ・ (日) ・ 日)

MC models data in an appropriate way