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The observation process

Reality Observation Data

_ Instrument response
theoretical models ' Images, spectra, ...

noise model

<~

(Vianello et al. 2015)



Channel energy (keV)
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' The instrument

* react to the incoming signal S producing an analog
output D related to the input in some known way:

100 1000
Photon energy (keV)
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DW,E,.)=S8,E,.)oR({p E,pP, E,..)

Energy response of a Fermi/GBM Nal detector

e s - o *The dispersion in energy Is called energy dispersion, the
war ) e i j dispersion in space is called Point Spread Function (PSF)
1 | ‘For an ideal instrument E=E (no energy dispersion), p = p
||| -_ (infinite spatial resolution) so that D(p, E) = S(p, BE) X R(p. E)
| : - _
L LR TR e *Without knowing the response, the output of an
) Nal/SR (34 keV) ’ (d) Nal/SR (60 } inNstrument is of little interest
— - + -:i-. 150000 ;l . ‘
o . _ *You know R up to a certain level (systematic
ccccc T {d | | uncertainties)



Noise (randomness)

‘Random processes producing noise can be in the
source and/or in the detector

destroys information: in general makes the equation in
the previous slide not invertible (solution becomes non-
unigue)

Original Signal

-different types |
i : " ﬁw @ il ||!
*Gaussian noise A
J|J| ' ﬂ ; k Jﬂ | Il
*Poisson noise AN TR TR R i TR

'Different types of noises can contribute in different part
of the observation process
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‘Noise model(s): the type of hoise assumed to be at play
N the analysis at hand
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Hubble's law (from his paper, 1929)
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*'a mathematical representation of a theory

" The speed of a galaxy Is directly
proportional to their distance from the Milky
Way'

*'theory In a broad sense;
‘complete theory: General Relativity

‘phenomenological theory: a linear
relationship

‘often we start with a phenomenological theory,
only later we are able to include discoveries in a
broader physical theory

‘sometimes we have a prediction from a theory
which we want to verity

‘A model has parameters which are adjusted to
give the best fit on the dataset (more on this later)



you already used MaXimum Likelithood!
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LINEAR m
REGRESSION .
WITH ERRORS |

Find the line which passes through the data and
Minimizes the objective function:

(yi — QT; — b)z

I
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Justitication (1/2)

‘N points (x_i. y_i)
‘Noise model is Gaussian, each point is characterized by its error bar sigma_l
*The modelis assumedtobealiney=ax+b

‘the prediction at each x_iis M(a.b) =ax_i + b

‘Maximum likelihood idea: "what are the values for the parameters so that the model is
most likely to have generated our data?

* T he probability that the y_i point has been generated by the model M with some values

for its parameters (a.b) is:
2

1 _ ('yz'—ﬂ:ﬂé—b)
P(yi‘a? b) — \/ﬂ@" € i

-For independent events the probability P(A and B) = P(A)P(B|A) = P(AP(B). So if the points
are all independent. the probability of obsewtng the data given the model (likelihood) is:

L(yla, b) H P(yi|a, b)

*The Maximum Likelihood Estimate (MLE) for a.b is the pair (a.b)_MLE for which the
likelihnood function is at its maximum:

(a,b)rLp = argmax L(y|a, D)
a.b



Justification (2/2)

‘Let's take the logarithm. The point (a.b) for which L(yla.b) is maximum is the same for
which log(l(yla.b)) is maximum because log() is a monotonically-increasing function:

N
=[]
‘Lets plug in the Gaussian distribution and develop some algebra:

2
(y;—ax;—0b)

N 1 o 254
>V, log | e

2mo;

—ax;—b)?
?;0 o 207 = — log (V2m0;)
= —%Xg(a? b) — const

|

log L(y|a, b)

of course maximizing this function is the same as minimizing chi”®2;

: e . 2
(a,b)rpp = argmax L(y|a,b) = argmin x~(a, b)
a.b a.b
(note that the 1/2 factor in front of chi square is NOT unconsequential for confidence

intervals. If you build a c.i. using chi*2 you need to need to double the delta you are
looking for with respect to the likelihood case)



LIkelihood and MLE

'‘Lets generalize the definition of likelihood:
“we have a model M with a set of parameﬁrg

"we have a dataset D, and d_{i} is a single datum characterize by Its
probability distribution P_I which depend@on or a subset of it

L(D\Q‘)ﬂ S | Bl H(di\ﬁ)ﬁ
log L(D|) = ;i log (Pi(diQ))

*The Maximum Likelihood Estimate for the parameters is;
ﬁﬂfLE — arginax L(D‘Q)
Q)
*S0me notes:
*O<P_i<1solL>0logL<0

*each point can have its own probability distribution
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*To link our model to the data we need to pass through
the instrument!

‘ldea: bring our theoretical model M to the data space
(forward-folding)

Instrument response

Images, spectra, ..

| theoretical models

-
noise model

"for a given set of parameters, compute how our gl
instrument would see M, i.e., convolve M with the

response of the instrument, then compute the
Lkelihood

maximize the likelinood to find MLE




Photon counting and PoIsSson noise

Radiation from an astronomical source is a random process:

‘for instance, populations of particles (atoms, electrons..) emitting
ohotons

‘Lets take a main-sequence star (blackbody radiation with stable
temperature)

*The emission of a single photon is governed by quantum mechanics
and happens at a random time

*The emission of one photon does not influence the emission of another
(independent processes)

*The rate of emitted photons r is constant

"homogeneps Ryissoh opeaisih A = ra:

‘It the rate is not constant (but randomness and independence are still
satisfied), then we have a non-homogeneous Poisson process with r = r(t)

*Poisson process can be generalized to other quantities (energy) and also to
more than 1 dimension



PoIsSson likelihoodl:

‘Fermi/LAT and the detectors of the GBM are photon-counting experiments

‘Let m be our theoretical model and M = m o R (model prediction, more on
this tomorrow)

‘Lets divide our data in a certain number of bins i=1..N In n dimensions (space,
time, energy..), and be n_i the number of photons recorded in the i-th bin

-divide the model prediction the same way so that we have the prediction of
the model for each bin (M_i)

For a given bin the Poisson distribution would be:

(uis)"

Py(ni| Q) = o e~ Mil{)
* The log-likelihood function becomes:
log L(D|Q) = . ynilog (Mi(Q)) — Mi(Q) — log (ny!)

= —Nprea(?) + X1 mi log (Mi(©2)) — log ()
_—



EXERCISE



INSTALLAND RUN



EPrOr computation on single measurement

The more data you have, the smaller the variance around
the true value (width of the distribution Is prop. to error ).

i

This happens because the likelihood is more peaked
around the true value.



Error computation on single measurement

There is a theorem (Wilks theorem) that under certain
hypothesis guarantees that the true value Is contained in
the interval between max(L) - 0.5 and max(L) + 0.5 for 68%
of the time. This is how an error bar In likelihood analysis
S computed.

f you have more than one parameter, you have to repeat
the fit for each point in the grid (profile likelihnood)




Model bias and variance

Modeling error Intrinsic variance

N : : " 4
Ere) = (EU@] - 1)) + £ | ({(0) - Ei@)) | +0:

Bias. how much the Variance: how
average prediction much each
s far from the truth prediction Is

different from the
average prediction
f Generative function (truth’)
f Model optimized for one experiment

E  Average over many (-> inf) experiments
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Complexity of the model (~ effective number of degrees of freedom)

The bias Vs variance tradeoff

‘Both a model with high bias and a model
with high variance will fail to generalize
beyond our current dataset

n practice, the truth is (of course) not
accessible, so how to reach the tradeoff?

fyou have a lot of data generated by the
same pProcess.

“divide In training and cross-validation
data: optimize your model on the
training set, check its performances
on the cross-validation set

n Astronomy this seldom happens

*still, we need a model which explains
all significant features of our data (no
underfitting), but which does
not model noise (no overfitting)



Make sure you can explain these
in terms of bias vs variance

*better fit not always better model, ie, better fit' |- smaller
modeling error

‘adding one or more additive features to an existing model (for

example, adding a spectral line to a power law) will always give
you a better fit

‘confirmation of an effect from a different experiment increases
your confidence on the result

'In general, between a reasonable model with many parameters
and another with fewer parameters, you cannot say which one is
petter (-gives a smaller modeling error) unless they are nested
(hint: nuMmber of parameters between non-nested model does not
necessarily measure the difference in complexity. Need
effective degrees of freedom)



signiticance of a source

SO how to decide If a feature Is significant?
‘Likelihood Ratio Test:

‘compare two models: a simple one HO (null hypothesis) and a more
complex one H1 (alternative hyp.)

"HO and H1 need to be nested: there is a set of parameters which H1 ->
HO

‘Under certain ¢l mstan e { ots \ Z)Wﬁks theorem holds:
SO TN BRI 157 e e

' The difference between the loglLs (which is the ratio between the Ls) Is
called simply TS for Test Statistic

*The meaning is: the improvégggl@ﬂt_immg)ﬂébtamed with HO->H1 is a
random coincidence with probability

‘If the probability is below a threshold, we can reject the null hypothesis



When does WIIKS' theorem hold?

Conditions:

‘the point where H1 -> HO must be in a region of the parameter
space not at the boundaries of the allowed values

‘and the information matrix must be finite and positive definite. In lay

terms, the point where H1 -> HO must not cause degeneracy in the
carameters

‘Example: adding a point source does not satisfy this requirement

*H1 -> HO for a normalization = O for the source

*but normalization = O Is at the boundary (no negative source),
and the spectrum and the position of the source do not matter
anymore if norm = 0 (complete degeneracy)

*Pay a visit to Monte Carlo!
*simulate many times Ho, fit it with both HO and H1, record TS
‘make a histogram of TS and verify if it follows chisa,.
“If not, use the MC to calibrate TS
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Band Vs Band + Power law

o v b W N

i
o o
Frin TTIT T 1T TTITI T TOT T 1ol TTHM
Bl AL AL L
r
r
I
t

I T (N N S
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Band Vs Band + Power law with Exp. cutoff
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From the first LAT GRB Catalog
(Ackerman et al. 2013)



