OBSERVATION OF GAMMA-RAY BURSTS AND SHORT DURATION TRANSIENTS WITH FERMI/LAT

Giacomo Vianello (Stanford University) giacomov@stanford.edu

OUTLINE

- Introduction
- •Present:

°results on Gamma-Ray Bursts above 100 MeV

•Future:

- °New algorithm and the first 100 LAT GRBs
- °blind search
- ·Bonus:

°the Multi-Mission Maximum Likelihood framework (3ML)

prezi:

https://prezi.com/xamnsnpptkcs/fermilat-observations-of-grbs/

MISSING GAMMA-RAY BURSTS?

During the first 3 years we seemed to observe less GRBs than expected (~5% probability for 3 years).

Lower Lorentz factors (Guetta et al. 2010)? Spectral cutoffs? ...

3 years: predicted 36

predicted 36 [Band et al. 2009] observed 28 [Ackerman et al., 2013]

New search algorithm

(Pass 6, old algorithm)

(Pass 8 + new algorithm)

HOW?

Capitalizing on the results of the first catalog, and on our improved understanding of the detector

Lesson 1: Lat signal longer than prompt emission

(first LAT GRB Catalog, Ackermann et al. 2013)

Multiple time scales

Lesson 2: localization systematic error

(Connaugthon et al. 2015)

✓ TS map on large search region

Better sensitivity

More mid- and low-fluence GRBs

- The first catalog hinted for a class of super-energetic GRBs: is it real?
- ·Is there a class of GRBs which do NOT emit at high energy?
 - °The strange case of GRB 100724B
- Very high energy photons (> 10 GeV) seems to come late: is this effect real
 ? Is this evidence for IC emission?

What can you do with > 100 GRBS

•

BLIND SEARCH

Look for transients in 6 years of data (~1 billion photons/events!)

GRBs from the first GRB catalog

Room for discoveries

Can we do better for short duration and notvery-bright transients?

IS THERE ANYBODY IN THERE?

LTF BLIND SEARCH

- + Scale-agnostic search
- + Exploit our knowledge about the gamma-ray sky

survey mode

- •Field of view is ~1/3 of the sky
- •Full sky coverage every ~3.2 h
- •Orbit precesses with a ~53.4 d period
- •Effective area varies with the off-axis angle

Exposure over ~3.5 hours, map in Galactic coordinates

Path of the Vela pulsar in instrumental coordinates over 2 y of observations

STANDARD BB DOES NOT WORK FOR US

- ·BB works in the counts space (Poisson statistic)
- •Even if the source flux is constant, the count rate changes following the effective area variation as the source moves in the F.O.V.

Transient above the Batman curve

(http://mathworld.wolfram.com/BatmanCurve.html)

MODIFIED BB

- + Need to know the background distribution as function of time
- + Search for changes with respect to the background
- + Automatically account also for data gaps (BTI) and variations in livetime

Transient above the Batman curve

(http://mathworld.wolfram.com/BatmanCurve.html)

WHAT ABOUT THE SPATIAL DIMENSION?

BB is a time-domain algorithm, while we require a transient to be a point source, not just any excess

DIVIDE ET IMPERA

- + Dividing in many small regions, excesses within regions are clustered by construction.
- + Each region is independent -> Massive parallelization

1712 overlapping circular region with a ~5 deg radius

(hitting unsolved mathematical problem...)

FIRST LIGHT

Two days with two known GRBs (a bright long one, and a faint short one not found by other algorithms)

Truly sampling a new discovery space

BOTTOM LINE

- LTF-blind is coming online: a scaleagnostic blind-search algorithm for short-duration transients
- •Covers the parameter space which is not cover by currently running algorithms
- ·Stay tuned!

THE MULTI-MISSION MAXIMUM LIKELIHOOD FRAMEWORK (3ML)

Easy multi-wavelength, multi-instrument spectral and spatial modeling

AN OLD PROBLEM

- key information from multi-wavelength modeling
- ·Multi-wavelength -> multi-instrument
- •Different analysis, issues, data formats, software...
- ·How to combine them?

The observation process

Observation Reality Data Noise

theoretical models

Images, spectra, ...

classical solution: spectral Energy Distribution

- ·De-convolution (data -> model):
 - ° instruments measure integrated flux over a band
 - ° if the band is small, differential flux can be computed
 - ° if not or energy dispersion important (x-ray, gamma-ray), we need to assume a spectral model
 - * the fainter the source, the more the results will be model-dependent, i.e., statistically equivalent models can give different SEDs
- Modeling the SED with a model different from the one used to extract is error-prone
- Only possible for point sources, no extended

SED of Mkn 521, from Abdo et al. 2011

The idea of 3ML

- + Convolution (model -> data):
 - compare model with data through likelihood
 - model selection, parameter estimation etc. justified on solid statistical ground
 - possible for any source (faint, bright, point-like, extended)
- + convolution (forward-folding) routinely used in many software (Xspec, Fermi Science Tools, Chandra sherpa...)
 - 3ML is different because is based on plugins which compute the likelihood for each instrument using the official instrument software

why plug-ins

- Complete decoupling between 3ML and the instrument details
 - ° no constraints on data formats
 - ° data can keep their dimensions
 - *example: Fermi/GBM has time and energy, Fermi/LAT also space, HAWC has nhits instead of energy...
 - ° can accommodate any instrument / technology
 - each instrument can use its own likelihood based on the appropriate noise model (Poisson, Gaussian, mixed...)
 - ° plug-ins are easy to implement (~100-200 lines of code) and must be changed rarely
 - ° any development in the instrument software transfers to 3ML automatically through the plug-in
 - ° all results are obtained with 100% official software and methods
- even multi-messenger analysis possible (if the theoretical model can predict for example neutrinos)

Analysis chain

EARLY RESULT

status

- People involved from Fermi, HAWC, Swift, VERITAS and HESS working on the plugins
- More instruments welcome
- Point source analysis is ready
- Extended source analysis in development
- In-the-cloud system in development
- Proof of concept ready, applied for funding (grants)
- ·Website (slightly outdated): threeml . stanford . edu
- Code repository (open source): https://github.com/giacomov/3ML
- •Join in if you are interested!

the end