Time-over-Threshold in Digitization, Reconstruction and the MeritTuple

Leon R. Beamtest vrvs meeting Palaiseau, 14-Nov-2006

Topics

- Basics
- Calibration
- Relation of time-over-threshold to deposited charge
 - Digitization: charge \rightarrow raw ToT
 - Clustering: raw ToT \rightarrow charge
- Conversion to specific ionization
 - track parallel to strip (easy)
 - track perpendicular to strip (harder)
 - geometry
 - multiple strips
 - intermediate case (hardest)
- meritTuple values: reality check

ToT Basics

- The tracker front ends produce a level for each strip in the tracker.
 - the level starts when the signal crosses a certain point (from below), nominally set to be ¼ MinI.
 - The level ends when the signal crosses the same point from above, or when it times out (50 μ sec = 250 clock ticks).
- Each GTRC ORs the signals from each strip, so the actual ToT signal starts at the earliest start, and ends at the latest end.
 - Since there are nominally 2 GTRCs per plane, each controlling half the strips, there are 2 ToTs per plane.

A Simple picture

-4-

Some things to remember

- If there are two or more clusters in the same half-plane, there's no way to tell, a priori, which cluster produced the ToT.
- Noise hits are generally not a problem, because they tend to have very low ToTs.
 - but not true for deltas and compton electrons!
- The very events we are looking for (two tracks from a single vertex) can be problematical with respect to ToT.
- There are many handles to help sort out ambiguities, none of which have been incorporated yet into our code:
 - track lengths
 - different path lengths in the 2 views
 - tracks which cross the mid-point of the plane
- In what follows, I'm looking at single-track "muons", in data and MC with the most minimal cuts to eliminate electrons in the data sample.

Calibration: Raw ToT <-> Charge <-> MIPs

time = rawToT/countsPerMicrosecond charge = muonScale*(threshold + time*(gain + time*quad)) mips = charge/fCPerMip

t1 = (charge/muonScale - threshold)/gain t2 = quad/gain $rawToT = countsPerMicrosecond*(-1 + sqrt(1 + 4t_1t_2))/2t_2$ $= countsPerMicrosecond*t_2(1 - t_1t_2), |t_2/<<1$

where

muonScale ~ 1, threshold ~ 1.2 fC, gain~ 0.6 fC/ μ s, quad~.005 fC μ s⁻² countsPerMicrosecond = 5; fCPerMip = 5;

Sample of Gains (thresholds, quad terms are similar)

MIPs vs Raw ToT

Charge vs Time

Energy deposit for muons (data)

Digitization: Charge \rightarrow **raw ToT**

-11-

Charge Fluctuations in Strips (not modeled in MC!!)

• Energy deposit in strip goes like the Landau distribution for that length

• raw ToT is maximum of individual strip raw ToTs

Why do charge fluctuations in the strips matter?

...because the rawToT is the *maximum* of all the individual raw ToTs.

The lowest "gain" gives the highest ToT for a given charge.

-14-

Deposited Charge: Track parallel to strip (easy)

 $i \approx sec(\theta)$

MIPs vs $sec(\theta)$, φ within 0.1 rad. of strip direction

MIPs vs $sec(\theta)$, φ within 0.1 rad. of strip direction

Geometric Factor for Perpendicular Tracks

Normalized slope is $400/228tan(\theta)$

-22-

Three strips fire...

In every case, at least one strip is fully traversed, and for some angles, all three.

And...

Remember this? We expect the actual ToT to increase faster than geometric, because at large angles, we sample the ionization several times, and take the largest.

What does it really look like? -- Data

MC

4. 在 8. 场 MIPs vs normalized slope, by cluster width 1.4 1.2 0.8 Geometric factor for tracks perpendicular to strips 1.2 0.6 0.4 МС 0 2 0.2 5 6 Normalized slope 00 3 5 2 4 1 6 Normalized Slope

in end view

Specific ionization in meritTuple is corrected as a function of θ , ϕ , and number of strips.

ToT Calculation in meritTuple

- The specific ionization for each cluster is calculated using the process above.
- Currently, four values are stored in the ntuple, all referenced to the best track:
 - Tkr1ToTFirst: Mip value of first hit
 - Tkr1ToTAve: average value for all the hits
 - Tkr1ToTTrAve: average, excluding largest and smallest
 - Tkr1ToTAsym: asymmetry between first 2 and last two ToTs
- Reminder: TrkTopToT is the *larger* of the ToTs of the two planes in the first layer of the track.
 - hard to interpret

Tkr1ToTFirst for all ϕ , Data

Tkr1ToTFirst for all ϕ , MC

Tkr1ToTFirst for all ϕ , Data

To End with some Questions

- It's probably time to revisit the calculation of the ToT.
 - Do we want to introduce energy fluctuations per strip?
 - Can the procedure for the end view be improved?
 - Should there be a dedicated ToT analysis performed after the tracks are found?
 - For each track separately?
 - For the ensemble of tracks (in the Event Summary phase)?