

GLAST Large Area Telescope:

TKR TOT/Threshold Calibrations

Hiro Tajima (SLAC)

TKR

GLAST LAT Project LAT Beam Test Meeting- Nov 14, 2006 TKR Parameters Relevant to TOT Calib

- TACK timing.
 - TOT is initiated by TACK (trigger acknowledge), not TREQ (trigger request).
 - TACK is ~2 us later than TREQ.
 - Different between GASU and non-GASU system.
- GTFE charge injection scale.
 - GTFE calibration DAC determines charge for charge injection tests.
 - Affect threshold calibration.
 - Use muon TOT peak for absolute calibration.
 - Requires correct GTFE threshold and tot parameters.
- GTFE Threshold.
 - Higher threshold, shorter TOT.
- TOT gain parameter.
 - Correlate input charge and TOT.
 - Requires correct TACK timing and GTFE threshold.
- Above parameters are cross-dependent.
 - Requires interactive process to optimize the parameters.

LAT Beam Test Meeting- Nov 14, 2006

GLAST LAT Project

- Determine TACK timing for charge injection test.
- TOT calibration procedure.
 - GTFE Threshold calibration assuming calibration DAC scale is correct.
 - TOT-charge calibration.
 - Measure TOT vs. input charge and fit to 2nd order polynomial to obtain TOT "gain" parameter.
 - Pretend input charge (calibration DAC scale) is correct.
 - Factor out channel dependence.
 - Charge scale calibration.
 - Use TOT gain parameters to convert TOT to charge.
 - Muon MIP peak to calibrate input charge (calibration DAC) scale.
 - Second iteration of Threshold DAC calibration.
 - Use the calibration DAC scale obtained above.
 - Second iteration of TOT-charge calibration.

TACK Timing Determination

- TACK timing for charge injection needs to be determined.
 - Peak TACK timing for charge injection.
 - TACK timing at TKR pulse peak.
 - Obtain from TACK scan.

- Data capture TACK timing for charge injection.

- TACK timing corresponding to data capture with TKR trigger.
- Determine data capture timing with respect to the peak timing for TKR trigger.
 - TACK scan with external scintillator trigger peaks at 0.25 μs with trigger window width=1.
 - This corresponds to -0.25 μ s for TKR trigger. (TKR trigger is 0.5 μ s later than the external scintillator trigger.)
 - In the real data taking, the data is captured at 0.55 μs (trigger window width = 12).
 - The distance between the peak and the data capture is 0.8 μs (0.55 + 0.25 μs).

LAT Beam Test Meeting- Nov 14, 2006 **Threshold DAC Calibration**

- Scan threshold DAC for a given input charge (1.4 fC ~ 0.27 MIP)
- Fit to error function. ٠

50

40

30

20

0

Threshold DAC

Hiro Tajima, TOT/Threshold Calibrations

5

LAT Beam Test Meeting- Nov 14, 2006

TOT-Charge Calibration

- Charge injection test.
 - Measure TOT as a function of input charge.
 - Fit to second order polynomial.
 - Charge = p0 + p1*TOT + p2*TOT²
 - Large dispersion of conversion parameters within GTFE.
 - Due to shaper circuitry limitation.

Hiro Tajima, TOT/Threshold Calibrations

• MC studies on incident angle dependence and bias.

- Bias due to fit, charge sharing and angle correction
 - Peak at 4.92 fC
 - This bias is taken into account in charge scale calibration
 - Muon energy distribution could affect the peak.

Charge Scale Calibration

- Fit muon charge distribution for each GTFE.
 - Gaussian convolved Landau distribution.

- Definition of charge scale. ٠
 - Plot ratio 4.92/peak. (4.92 fC is expected for MIP) _ (should be 1.0 if calibration is correctly applied.)

Before charge scale calibration

LAT Beam Test Meeting- Nov 14, 2006 **GLAST LAT Project Data/MC Comparison: TOT Distribution** Fit parameters for data and MC are very similar Gaussian convolved Landau distribution function TOT charge distribution chargeAll – Peak at 4.91 : 4.92 fC Entries 30375 1200 Mean 6.124 RMS 2.286 Landau width at 0.375 : 0.344 γ^2 / ndf 382.9 / 108 _____ 1000 Ŵidth 0.3443 ± 0.0062 MP 4.918 ± 0.008 MC Area $\textbf{3047} \pm \textbf{18.1}$ - Gaussian sigma at 0.69 : 0.69 800 0.6944 ± 0.0111 GSigma 600

LAT Beam Test Meeting- Nov 14, 2006

- Threshold dispersion improves in the second iteration.
 - Order of 10% change due to charge scale.
- Change of TOT offset, gain and charge scale is minimal.
 - Stable against 10% level change of threshold.

Parameter	First Iteration		Second Iteration		Ratio, Xi(2nd)/Xi(1st)	
	Mean	RMS	Mean	RMS	Mean	RMS
Threshold	28.4	2.3	26.5	2.1	0.93	0.04
TOT offset (fC)	1.23	0.21	1.23	0.21	1.01	0.08
TOT gain (fC/µs)	0.59	0.14	0.59	0.14	1.00	0.04
Charge scale	1.11	0.09	1.10	0.10	1.01	0.02

Effective Data Threshold

- Effective data threshold is higher than the trigger threshold.
 - Trigger threshold: charge required to trigger at pulse peak.
 - Data threshold: charge required for data capture at TACK.
 - TACK: ~1 µs after the trigger request.

12

Hiro Tajima, TOT/Threshold Calibrations