

Validation of CAL MIP finder algorithm with CERN / PS proton data

MF variables, data sets and cuts

Procedure

GLAST LAT Project

- Uses only CAL information !
- selects CAL hits with energy between 2 MeV and 50 MeV (must be >3)
- starts from a region far from the energy centroid and loop over hits
- finds MIP track segments = sets of aligned hits with energy compatible with a MIP
- Rev 1.17 (1.19 in BTrelease)
- Outputs

٠

- Merit: number of tracks (CalMipNum) and best track (from chi2)
- Recon: all tracks with >3 hits
- CAL only variables
 - center point, direction, distance to closest CAL edge
 - chi2 = (chi2_xz + chi2_yz) / (Nhits-1) from a simple least square fit
 - arcLen = total arc length over all layers containing at least one hit for this track
 - ecor = mean equivalent vertical energy computed by averaging path-length corrected energies on a layer basis
 - ecorRms = corresponding RMS
 - erm = total energy contained in a cylinder of 1 Moliere radius around track
 ⇒ ermc = erm/arcLen (not in merit!)
 - CAL + TKR variables (not in merit!) need TkrNumTracks>0
 - dErr = Acos(CalMipTrackDir*Tkr1Dir) = angle between CalMipTrack and TKR best track
 - barDist = distance between TKR best track extrapolation and CalMipTrack center point

٠

Beam Test Workshop 4 – 14-15/11/2006

MF variables, data sets and cuts

Beam Test Workshop 4 – 14-15/11/2006

Beam Test Workshop 4 – 14-15/11/2006

Beam Test Workshop 4 – 14-15/11/2006

Beam Test Workshop 4 – 14-15/11/2006

Beam Test Workshop 4 – 14-15/11/2006

Conclusions

- MF validated
 - The Mip-Finder (Rev 1.17) works well and can be used in background studies:
 - with the <u>full list of discriminating variables</u> (including 3 variables not directly in the merit, mostly barDist and ermc)
 - and taking account of their <u>dependency on raw energy</u>
 - To do
 - MF VERY slow for gammas
 - use of CAL clustering to speed up the algorithm (pending)
 - Check proton / gamma separation

MF vs CalMIPRatio

