

The Light Dark Matter eXperiment

EPS-HEP 2019, Ghent, 10-17 July

Valentina Dutta, UCSB

on behalf of the LDMX Collaboration

Motivation

WIMPs extensively explored with past and upcoming experiments

Light dark matter:

- Well motivated by "hiddensector" models
- Can be extensively probed with accelerator-based experiments

Introducing hidden-sector DM

DM annihilation rate $\sigma v(\chi\chi \to A'^* \to ff) \propto \epsilon^2 \alpha_D \frac{m_\chi^2}{m_{A'}^4} = \frac{y}{m_\chi^2} \quad , \quad y \equiv \epsilon^2 \alpha_D \left(\frac{m_\chi}{m_{A'}}\right)^4$

y: dimensionless interaction strength

Accelerator targets

US Cosmic Visions 2017 Community Report Accelerator targets

Thermal and Asymmetric Targets at Accelerators

Relativistic production at accelerators nearly insensitive to DM spin and mass

Accelerator vs direct detection

Direct detection: non-relativistic DM scattering highly sensitive to DM nature

LDMX concept

LDMX: an electron-based fixedtarget missing momentum search for light dark matter

Missing momentum/energy approach:

- DM production identified by missing energy and momentum in detector
- Equipped for e/γ particle ID
- p_T can be used as a signal discriminator and identifier

Assuming DM produced via "dark bremsstrahlung", $\sigma \sim Z^2 \epsilon^2 / m_{A'}^2$

A'

DM production kinematics

Signal characteristics

- A' takes most of the beam energy
- Recoil electron soft, at wide angles —> large missing momentum

Signal: Etotal = Erecoil << Ebeam

Recoil e- kinematics allow efficient background rejection and signal selection Electron Recoil Energy Distributions, $E_e > 50$ MeV

LDMX design considerations

Design study on arXiv: arXiv:1808.05219

Individual tagging and reconstruction of up to 10¹⁶ e⁻ on target (EoT)

- 4-20 GeV, low current beam with high repetition rate (10¹⁶ e⁻/year ≈ 1e⁻/3 ns)
- Large beam spot (~10 cm²) to spread out occupancy and radiation doses
- Potential beamlines: S30XL @SLAC, eSPS @CERN, CEBAF @JLAB

Detector technology suited for high rates, high radiation doses

- Fast, high momentum resolution, low mass trackers
- Fast, granular EM calorimeter with good energy resolution, hermetic HCAL veto

Two-stage approach: initial goal: 4x10¹⁴ EoT, extending to 10¹⁶ EoT, higher energy

LDMX design

HCAL: scintillator/steel sampling calorimeter similar to Mu2e Cosmic Ray Veto system

Tracking system

Adapted from Silicon Vertex Tracker of HPS at JLab

 Fast (2ns hit time resolution), radiation hard

Tagging tracker

 In central dipole field, measure incoming electron

Recoil tracker

- In fringe field, measure recoil electron and veto extra particles
- Momentum resolution limited by multiple scattering in target (~4 MeV smearing)

0.1 X0, tungsten, balance signal rate vs momentum resolution

Tagging tracker efficiently rejects beam backgrounds

Electromagnetic calorimeter

Draws on design of CMS high granularity endcap calorimeter upgrade

- Si/W sampling calorimeter
- Fast, dense, radiation hard
- 34 layers, each with 7 silicon modules, up to 432 pads/module
- ~40 X₀ deep for full shower containment

Capabilities

- Provides fast trigger: energy sum in first 20 layers, 3x10³ bkg rejection for ~50-100% signal efficiency
- High granularity, both transverse and longitudinal shower shapes can be exploited to reject background
- Capable of MIP tracking to further improve background rejection

Electromagnetic calorimeter

 $\gamma^* \rightarrow \mu^+ \mu^-$ event contained in ECAL (soft μ^+ , μ^- decay-in-flight)

ECAL BDT

ECAL veto based on boosted decision tree optimized to reject ECAL photo-nuclear (PN) background

- Information related to energy deposition, transverse and longitudinal shower shapes, shower containment regions
- Provides additional 10³ rejection for ECAL PN events passing trigger for ~90-99% signal efficiency

Hard-to-veto events: very little energy deposition from PN products in ECAL e.g. containing high-energy forward-going neutrons, need HCAL to veto

Hadronic calorimeter

Hadronic calorimeter

Single neutron veto inefficiency vs HCAL depth for different sampling fractions

Neutron energy = 2.0 GeV

LDMX sensitivity with 4x10¹⁴ EoT

Sensitivity extends past scalar and majorana fermion targets below 100 MeV

Detailed analysis in arXiv:1808.05219

Full LDMX sensitivity

Strategies to improve initial reach: higher beam energies, change target density/thickness

Extend sensitivity past pseudo-Dirac target up to 100 MeV

Detailed analysis in arXiv:1808.05219

Summary

Accelerator-based experiments have unique capabilities in the search for light dark matter

 Missing energy/momentum experiments provide best sensitivity per luminosity

LDMX can probe all thermal targets over most of the MeV-GeV mass range

- Broad physics potential¹
- Can also be used for photonuclear and electonuclear measurements
- Can be realized within the next decade!

¹Also sensitive to

- DM with quasi-thermal origin (asymmetric DM, SIMP/ELDER scenarios)
- new invisibly decaying mediators in general
- displaced vertex signatures from DM coannihilation or SIMP model
- axion-like particles
- milli-charged particles

Additional Material

Missing momentum reach

Parameter dependence

LDMX potential

 $m_{Z'}$ [GeV]

DM production kinematics

Signal characteristics

- A' takes most of the beam energy
- Recoil electron soft, at wide angles —> large missing momentum

Recoil $e^- p_T$ also a strong signal discriminator, depends on A' mass

Signal and background $\ensuremath{p_{\text{T}}}$

Background rejection summary

Hard bremsstrahlung ($E_e < 1.2$ GeV) followed by photonuclear (PN) reaction in target or ECAL

- Wide range of hadronic final states, challenging cases with very little ECAL energy deposition
- Boosted decision tree (BDT) using ECAL observables used in combination with veto on HCAL activity
- Tracking provides further handles to reject target PN

Electronuclear (EN) interactions in target

 Similar composition to PN, similar rejection strategy as target PN

Photon conversions to muons

- Often leave MIP tracks in HCAL, can be vetoed based on HCAL activity
- ECAL MIP tracking and energy deposition can help to reject muons that decay or range out in ECAL

ECAL BDT

Improved discrimination by identifying expected shower containment regions using tracking and expected shower size vs depth

Signatures

