Light Dark Matter eXperiment (LDMX) Scientific Goals and status of Design Studies

O. Colegrove (UCSB) For the LDMX Collaboration: SLAC, UCSB, UMN, UCSC, Caltech, and FNAL

Motivation for Sub-GeV Dark Matter

- Next frontier for Dark Matter science
 - Logical place to focus given LHC and Direct Detection null results
 - Unique opportunity for high impact from small experiment!

Implications of Sub-GeV Dark Matter

Observed DM density fixes particle annihilation crosssection – this tells us a lot about its interactions!

- I. DM lighter than a few GeV must annihilate via new **light** force carrier
 - → DM production at low-energy accelerators through new force

 $e^-Z \to e^-ZA'; A' \to invisible$

Observed DM density fixes particle annihilation crosssection – this tells us a lot about its interactions!

- DM lighter than a few GeV must Ι. annihilate via new **light** force carrier
 - DM production at low-energy accelerators through new force

9 Ian. 201

- APS Abril M

LDMX

Colegrove

Implications of Sub-GeV Dark Matter

Observed DM density fixes particle annihilation crosssection – this tells us a lot about its interactions!

- I. DM lighter than a few GeV must annihilate via new **light** force carrier
 - DM production at low-energy accelerators through new force

Implies a minimum coupling const.

 Minimum production cross-section (thermal relic target)

The Missing Momentum Approach

- Considered by many to be the most robust technique for discovering Sub-GeV thermal dark matter
- LDMX employs this technique via fixed target electron scattering
 - Dark photon radiated in 10% X_0 target decays to DM (A' $\rightarrow \chi \chi$)

The Missing Momentum Approach

- Considered by many to be the most robust technique for discovering Sub-GeV thermal dark matter
- LDMX employs this technique via fixed target electron scattering
 - Dark photon radiated in 10% X_0 target decays to DM (A' $\rightarrow \chi \chi$)
 - Distinctive signal kinematics (M_e << M_{A'} << E_{beam}) yields a final state with hard A' (invisible) and a very soft recoil electron
 - Results in the measurement of significant missing momentum/energy

Projected Sensitivity

- Phase I 4•10¹⁴ electrons delivered over 1-2 years of running
 - Requires multi-GeV electron beam that operates at MHz scale.
 - Possible w/ proposed DASEL beamline at SLAC's LCLS-II or CEBAF at JLAB.
 - LDMX Phase I is sensitive to sub-GeV DM beyond the Scalar Relic Target

LDMX Detector Concept

- Magnet and Tracking
 - Collimated precision tagger tracker in full field → 10% X_O target → compact and precision recoil tracker in fringe field
- Si-W sampling calorimeter (ECAL)
 - 40 X_{\odot} , 1.5 λ , 30 Layers, 7 modules per layer of high efficiency, high granularity calorimetry
- Scintillator-Steel sampling calorimeter (HCAL)
 - HCAL Forward Up to 50 layers (15 λ), un-segmented for simplicity, veto boosted hadrons
 - HCAL Surround Up to 20 Layers, 6 λ , veto wide-angled hadrons

Tagger and Recoil Tracker

• A beam's eye view of the tagging and recoil trackers

Tagger and Recoil Tracker

Electromagnetic Calorimeter

 A beam's eye view of a typical 4 GeV e-'s shower in the ECAL

Electromagnetic Calorimeter

- 40 X_{O} (30 layers) High Granularity Si-W Calorimeter
 - Small Molière radius, ability to track isolated min. ionizing particles (mips).
 - Sufficient resolution to fully veto E&M background
 - Leverage CMS technology extensively validated radiation hard modules
 - Can withstand the effective fluence of 10¹³ n/cm² caused by 10¹⁴ e-'s on target

Photonuclear Background

Geant4 Simulation

5

10

- Initial results show that neutron dominated final states are the most difficult
- ECAL geometry has been optimized to help with detection
 - HCAL still required to successfully mitigate all PN events

Energy Deposited in the ECAL Si (E_{dep}) Distribution :

25

20

15

For a typical 4 GeV e- E_{dep} follows a Gaussian w/ μ ~ 68 [MeV], σ ~ 6 [MeV]

35

30

Edep [MeV]

Photonuclear (PN) reactions create a non-Gaussian (power-law) low energy tail

Frac

10⁻¹

10-2

Ω

- LDMX's hardest background :
 - Initial results show that neutron dominated final states are the most difficult
- ECAL geometry has been optimized to help with detection
 - HCAL still required to successfully mitigate all PN events
- Inclusive Geant4 background vetoed at O(10¹⁰) e- on target
 O(10¹²) sample is under study
- Energy Deposited in the ECAL Si (E_{dep}) Distribution :
- For a typical 4 GeV e- E_{dep} follows a Gaussian w/ $\mu \sim 68$ [MeV], $\sigma \sim 6$ [MeV]
- Photonuclear (PN) reactions create a non-Gaussian (power-law) low energy tail

Photonuclear Background

* $\gamma_{\text{[from target]}}$ (E >= 2.5 GeV) \rightarrow PN reaction (~3B such events expected from 10^14 EOT) -rac. Hard* PN Reactions 200 MeV A' **10**⁻¹ 10-2 25 30 5 10 15 20 Edep [MeV]

Hadron Calorimeter

CMS/LHC upgrades and SLAC hardware

Hadron Calorimeter

- LDMX will comprehensively explore the sub-GeV DM phase space.
 - Largely unexplored, simplest and well motivated thermal relic scenarios
 - LDMX is the only proposed experiment capable of meeting the thermal relic target

Summary and Conclusions

- Made possible by leveraging latest detector tech.
 - CALICE & CMS inspired high granularity/rad. hard Si-W ECAL
 - HPS based High resolution SVT
 - Low noise SiPM HCAL readout
- Steps are being made to meet an aggressive timeline
 - Experiment is focused on operation in early 2020s

The end

Dark Sectors 2016 Workshop: Community Report

Jim Alexander (VDP Convener),¹ Marco Battaglieri (DMA Convener),² Bertrand Echenard (RDS Convener),³ Rouven Essig (Organizer),^{4,*} Matthew Graham (Organizer),^{5,+} Eder Laguirre (DMA Convener),¹ John Jarco (Organizer),^{5,+} Gordan Krnjaic (DMA Convener),⁷ Jeremy Mardon (DD Convener),⁸ David Morrissey (RDS Convener),⁹ Tim Nelson (Organizer),^{5,+} Maxim Perelstein (VDP Convener),¹ Matt Pyle (DD Convener),¹⁰ Adam Ritz (DMA Convener),¹¹ Philip Schuster (Organizer),^{5,6,+} Brian Shuve (RDS Convener),⁵ Natalia Toro (Organizer),^{5,6,**} Richard G Van De Water (DMA Convener),¹² Daniel Akerib,^{5,13} Haipeng An,³ Konrad Aniol,¹⁴ Isaac J. Arnquist,¹⁵ David M. Asner,¹⁵ Henning O. Back,¹³ Keith Baker,¹⁶ Mathan Baltzell,¹¹ Dipanvita Banerjee,¹⁸ Brian Batell,¹⁹ Daniel Bauer,⁷ James Beacham,²⁰ Jay Benesch,¹⁷ James Bjorkn,⁵ Nikita

Blinov,⁵ Celine Boehm,²¹ Mariangela Bondí,²² Walter Bonivento,²³ Fabio Bossi,²⁴ Stanley J. Brodsky,⁵ Ran Budnik,²⁵ Stephen Bueltmann,²⁶ Masroor H. Bukhari,²⁷ Raymond Bunker,¹⁵ Massimo Carpinelli,^{28,29} Concetta Cartaro,⁵ David Cassel,^{1,5} Gianluca Cavoto,³⁰ Andrea Celentano,² Animesh Chaterjee,³¹ Saptarshi Chaudhuri,⁸ Gabriele Chiodini,²⁴ Hisao-Mei Sherry Cho,⁵ Eric D. Church,¹⁵ D. A. Cooke,¹⁸ Jodi Cooley,³² Robert Cooper,³³ Ross Corliss,³⁴ Paolo Crivelli,¹⁸ Francesca Curciarello,³⁵ Annalisa D'Angelo,^{36,37} Hooman Davoudiasl,³⁸ Marzio De Napoli,²² Raffaella De Vita,² Achim Denig,³⁹ Patrick deNiverville,¹¹ Abhay Deshpande,⁴⁰ Ranjan Dharmapalan,⁴¹ Bogdan Dobrescu,⁷ Sergey Donskov,⁴² Raphael Dupre,⁴³ Juan Estrada,⁷ Stuart Fegan,³⁹ Torben Ferber,⁴⁴ Clive Field,⁵ Enectali Figueroa-Feiciano,⁴⁵ Alfessandra Filippi,⁴⁶ Bartosz Fornal,⁴⁷ Arne Freyberger,¹⁷ Alexander Friedland,⁵ Iftach Galon,⁴⁷ Susan Gardner,^{48,47} Francois-Xavier Girod,¹⁷ Sergei Gninenko,⁴⁹ Andrew Haas,⁵⁴ Keisuke Harigaya,^{10,55} Christophe Hearty,⁴⁴ Scott Hertel,^{10,55} JoAnne Hewett,⁵ Andrew Hime,¹⁵ David Hitlin,³

Yonit Hochberg,^{10, 55, 1} Roy J. Holt,⁴¹ Maurik Holtrop,⁵⁶ Eric W. Hoppe,¹⁵ Todd W. Hossbach,¹⁵ Lauren Hsu,⁷ Phil Ilten,³⁴ Joe Incandela,⁵⁷ Gianluca Inguglia,⁵⁸ Kent Irwin,⁵ Igal Jaegle,⁵⁹ Robert P. Johnson,⁶⁹ Vonatan Kahn,⁶¹ Grzegorz Kalicy,⁵² Zhong-Bo Kang,¹² Vardan Khachatryan,⁴ Venelin Kozhuharov,⁶⁸ N. V. Krasnikov,⁴⁹ Valery Kubarovsky,¹⁷ Eric Kufiki,¹ Noah Kurinsky,^{5,8} Ranjan Laha,^{13,8} Gaia Lanfranchi,³⁰ Dale Li,⁵ Tongyan Lin,^{10,65} Mariangela Lisanti,⁶¹ Kun Liu,¹² Ming Liu,¹² Ben Loer,¹⁵ Dinesh Loomba,⁶⁴ Valery E. Lyubovitskij,^{65, 66, 67} Aaron Manalaysay,⁶⁶ Giuseppe Mandaglio,⁶⁹ Jeremiah Mans,⁷⁰ W. J. Marciano,³⁸ Thomas Markiewicz,⁵ Luca Marsicano,⁷ Takashi Maruyana,⁵ Victor A. Matveev,⁴⁰ David McKeen,⁷¹ Bryan McKinnon,⁷² Dan McKinsey,¹⁰ Harald Merkel,³⁰ Jeremy Mock,⁶⁸ Maria Elena Monzani,⁵ Omar Moreno,⁵ Corina Nantais,⁷³ Sebouh Paul,³³ Michael Peskin,⁵ Vladimir Poliakov,⁴⁴ Antonio D Polosa,^{75, 76} Maxim Pospelov,^{6,11} Igor Rachek,⁷⁷ Thomas Rizzo,⁵ Alan Robinson,⁷ Antoni C Randazzo,²² Blair

Rubin,¹ Dylan Rueter,⁸ Tarek Saab,⁷⁸ Elena Santopinto,² Richard Schnee,⁷⁹ Jessie Shelton,⁸⁰ Gabriele Simi,^{81,82} Ani Simonyan,⁴³ Valeria Sipala,^{28,29} Oren Slone,⁸³ Elton Smith,¹⁷ Daniel Snowden-Ifft,⁸⁴ Matthew Solt,⁵ Peter Sorensen,^{10,55} Yotam Soreq,³⁴ Stefania Spagnolo,^{24,85} James Spencer,⁵ Stepan Stepanyan,¹⁷ Jan Strube,¹⁵ Michael Sullivan,⁵ Arun S. Tadepalli,⁸⁶ Tim Tait,⁴⁷ Mauro Taiuti,^{2,87} Philip Tanedo,⁸⁸ Rex Please refer to Dark Sectors 2016 : Community Report for more on LDMX

• We will be participating in :

U.S. Dark Matter Workshop (March 23-25 at University of Maryland)

DArk Sector Experiments at LCLS-II (DASEL): Concept

DASEL is a proposal to deliver low-current CW beam for Dark Matter searches parasitically from LCLSII linac.

The LCLS-II bunch rate of 0.929 MHz (1.1 us spacing) << RF frequency of the gun (186 MHz) and linac (1,300 MHz).

The SCRF linac can accelerate modest current in these "unused" buckets with minor modifications and no interference

Resulting low-current CW beam can support unique & high-impact dark matter experiments

21

Tagging Tracker Performance

- Momentum resolution of ~1% found in simulation matches analytic calculations
 - ~Vanishing likelihood for 1.2 GeV eto be reco. as 4 GeV e-
- Momentum Resolution (σ_{p×}, σ_{py}) at target is (1.0,1.4)
 MeV
 - Small compared to 4 MeV smearing from multiple scattering in 10% X0 target.
 - Excellent impact parameter resolution
 - Defines small "beam-spot" to match tagger and recoil tracks

Recoil Tracker Performance

Compact recoil tracker can reliably distinguish non-interacting 4 GeV electrons from low-momentum signal recoils.

Tests are underway to determine the possibility including an active target to reject hard brem. photons which promptly undergo a photonuclear reaction.

ECAL Performance

E&M Response and Resolution

More than 7σ fluctuation is required for a 4 GeV E&M shower to be measured as a 1.2 GeV e-.

Granularity also allows one to track reasonably well-isolated charged hadrons

Other Considerations

Fluka studies show that 10^{14} e-'s on target results in an effective fluence of 10^{13} n/cm²

500 um Si is preferred for best resolution

It appears liquid cooling will be sufficient for this environment

Hadron Veto Performance

- Primary role
 - Identification of energetic (1-2.5 GeV KE) neutral hadrons produced in photonuclear interactions in the target or early layers of the ECAL
 - Extension surrounding ECAL will also be useful for wide-angle bremsstrahlung from target and recoil tracker
- Initial optimization
 - Studied benefit of additional layers to improve the efficiency for tagging energetic neutrons
 - Further work is ongoing to tune detector layout, but cost is not likely to change

Off-detector electronics and DAQ

- Common off-detector electronics system based on the RCE/RPM ATCA electronics developed at SLAC
 - System is powerful enough to implement the trigger, DAQ, and controls in one ATCA crate
- DAQ
 - Est. event size 2.5 kB
 - The DAQ is capable of readout at 50 kHz, providing a factor of 10 safety on the trigger rate
 - DAQ bandwidth is additionally sufficient for a factor of five expansion in data volume, should the estimates be low

LDMX Physics Trigger

APV25 hybrids

- Screen out straggling (off E_{Beam}) electrons
- Measure Δ p across target
 - Recoil tracker placed in fringe field

Tracker and Magnet

Two tracking systems, separated by a target in separate vacuum, one magnet

- Tagging tracker: Tag incoming e-
 - Precise p and (x,y) position at target.
 - 7 stereo Layers: Modules like HPS SVT (L1-L3)
- Recoil tracker: Associate tag to recoil
 - Matches recoil electron track to incoming tagger track.
 - Momentum measurement for e-'s with E > 50 MeV.
 - 4 Stereo Layers: Modules like HPS SVT (L1-L3)
 - 2 Axial Layers: Modules like HPS SVT (L4-L6)

ECAL Modules

- Specifications
 - Modules to be mounted on thin C/AI cooling planes
 - 256-512 channel 8 in. hexagon sensors
 - Radiation hard design
 - Support 25 ns readout rate
- Leverage CMS HGCal technology
 - CMS HGROC front end readout chip
 - Module validation provided by CMS's extensive test beam campaign
 - 210 modules required Production can be achieved within 2 wks at one of five CMS production facilities

Successful test beams carried out at FNAL & CERN in 2016

- LDMX would comprehensively expand current exclusion limits of sub-GeV DM.
 - Detector design leverages US expertise

Summary and Conclusions

- Steps are being made to meet an aggressive timeline
 - DASEL beamline design is at an advanced stage
 - Project is being discussed with DOE to install beamline during LCLS-II construction stop in 2019
 - Construction schedule is focused on operation in 2020/21
- Studies are underway to understand photonuclear background.
 - Inclusive Geant4 background vetoed at O(10¹⁰) e- on target
 - Analysis is ongoing for O(10¹²) & exclusive processes