Introducing the Light Dark Matter eXperiment (LDMX)

Jessica Pascadlo on behalf of the LDMX collaboration May 25, 2023

Standard Model of Particle Physics

- Characterizes fundamental particles and how they interact with one another
 - Describes all regular matter in the universe
- Each of these particles have been observed experimentally
 - Second and third columns almost exclusively observed during high energy collisions
- If we have the Standard Model (SM), why do we care about searching for dark matter?

Why Dark Matter?

- We don't understand about 95% of the Universe's composition!
 - The current Standard Model (SM) must not be complete
- Understanding dark matter could help answer other fundamental questions about the Universe

Evidence for Dark Matter

- Strong case for the existence of dark matter (DM)
 - Galaxy rotation curves
 - Gravitational lensing
 - Cosmic Microwave Background anisotropy

- No detection (yet!) the origin and nature of DM is a key puzzle for particle physics
 - Standard model does not include dark matter
 - How do we narrow down a search region to determine what DM is?

Light Dark Matter

- Thermal relic dark matter is well motivated
 - Accessible experimental parameter space for candidates with mass greater than a proton (about 1 GeV) is dwindling
- General interest in expanding DM search to a mass scale similar to the electron
 and proton
 known particles

LDMX Concept

- From conservation of momentum, if "invisible" dark matter is produced, the signature would be some momentum missing from the recoil electron!
- e⁻ beam provided by Stanford Linear Accelerator Center (SLAC)
 - Planning on 4 GeV and 8 GeV runs
- Must be able to tag and reconstruct every electron
 - \circ Do this for up to 10¹⁶ electrons
 - Use low current, high repetition rate of 37 MHz, n_{e-}

= 1

DM Production & Kinematics

- Few DM signal characteristics for fixed target experiment
 - Dark photon (A') produced by "dark" photon radiation (bremsstrahlung) process
 - Large drop in energy of beam electron (taken away by A' production)
 - Leads to a "soft" recoil electron, the only visible final state particle
- Main background comes from SM bremsstrahlung process

LDMX Design

- Detector must be designed to withstand high radiation doses and high rates
- Missing energy trigger at electron energy less than (about) 30 percent of the beam
 - \circ With 10¹⁴ 10¹⁶ electrons, we can't keep data on all events!
 - $\circ \quad \mbox{Have to select events that look more signal-like} \rightarrow \mbox{set a simple energy cut/trigger for standard search}$

- LDMX builds on previous, proven designs from other experiments
 - Hadronic Calorimeter Muon-to-Electron Conversion Experiment (Mu2e) Cosmic Ray Veto
 - Tagging and Recoil Tracker Heavy Photon Search (HPS)
 - Electromagnetic Calorimeter Compact Muon Solenoid (CMS) High Granularity Calorimeter Upgrade

Backgrounds

- Detector designed to veto SM backgrounds
- With all systems combined, simulations predict < 1 background event!
 - Signal efficiency of ~30%-50% for O(1e14) electrons on target (EoT)
- See LDMX paper for more information: <u>arXiv:1912.05535</u>

Sensitivity

- Benchmark thermal relics are in black
- "Phase 1" corresponds to 4 x 10¹⁴ EoT and 4 GeV beam
- "Phase 2" corresponds to 10¹⁶ EoT and 8 GeV beam
- See more in LDMX Snowmass paper: <u>arXiv:2203.08192</u>

Conclusion

- Discovering dark matter would be an incredibly exciting achievement for the scientific community!
 - Low mass range of thermal relic model is becoming increasingly popular area to search
- LDMX will probe full low-mass range with unprecedented sensitivity
 - Can be taking data in a few years once a funding profile is established
- Also able to explore other areas of interest to the community
 - Displaced visible signatures Stick around for Lincoln's talk next!

Thank you!

Thermal Dark Matter

- Assume that DM is in thermal equilibrium with SM in very early universe
- Thermal DM as relic of the hot early Universe is one of the most compelling paradigms
 - <u>Generic</u>: only non-gravitational interactions between DM and SM
 - <u>Predictive:</u> current relic density suggests interaction strength at accelerators
- The current relic density Ω_{χ} is related to the annihilation cross section

$$\Omega_{\chi} \propto \frac{1}{\langle \sigma v \rangle} \qquad \langle \sigma v \rangle = 3 \times 10^{-26} \ \frac{\mathrm{cm}^3}{\mathrm{s}}$$

