LDMX: The Light Dark Matter eXperiment April 13, 2023 Matt Solt, University of Virginia University of Wisconsin HEP Seminar

The Existence of Dark Matter

- There is clear evidence for the **existence of dark matter** (DM)
- The fundamental nature/origin of DM is a **central puzzle in particle physics**
- SM can't account for DM. What are some ideas for what DM could be?

Galactic Rotation Curves

Gravitational Lensing

Cosmic Microwave Background

A Thermal Relic

- Astrophysical evidence of DM does not constrain the mass scale very well
- A thermal relic simple and predictive model of dark matter (DM)
- Thermal DM constrains DM mass to ~mass scale of SM particles and relates the annihilation cross-section to the observed relic abundance (~85%)

arXiv:9506380

A Thermal Relic

- What is a thermal origin of DM?
 - 1. Assume DM was in thermal equilibrium with SM particles
 - **2.** The universe expands and cools such that DM pairs are no longer produced
 - 3. The universe expands and cools such that DM annihilations cease
- The present DM density Ω_{χ} is related to the DM annihilation cross-section $\langle \sigma v \rangle$

must yield ≤ 85% DM!

S

 $\langle \sigma v \rangle = 3 \times 10^{-26}$

A Thermal Relic - WIMPs and LDM

- WIMPs are well-motivated, but accessible parameter space is shrinking
- Increasing interest in expanding the thermal DM search to "Light" DM (LDM) in the MeV-GeV mass range
- LDM requires non-SM "portal" interaction due to the Lee-Weinberg Bound

Light Thermal Dark Matter - Hidden Sector

- Hidden Sector Light Dark Matter
 - Sub-GeV DM requires an additional non-SM interaction for correct relic abundance
 - Why should the "dark sector" be any simpler than the SM sector?
 - Should we be looking for DM at the mass scale where we know stable SM particles exist?
- Simplest predictions involve a Dark Photon (A')
 - Additional U'(1) symmetry with an additional massive spin-1 gauge boson, an A'
 - \circ ~ Kinetically mixes with SM U(1) with factor ϵ
 - Ubiquitous benchmark for the physics community

Light Dark Matter at Accelerators

- Thermal Light DM models provide clear benchmarks for exclusion called "thermal targets" for a variety of types of experiments
- Thermal targets are attainable with next generation accelerator experiments
 Thermal and Asymmetric Targets at Accelerators

Advantage of DM Production at Accelerators

 $m_{\rm DM}$

- LDM production at accelerators is fairly independent of specific DM model
- "Thermal targets" for sub-GeV dark matter models can be completely probed by LDMX!

Non-relativistic vs semi-relativistic DM scattering

Dark Photon Signatures

Matt Solt

Dark Photon Production

Dark Photon Decay

Both visible and **invisible** final states are allowed depending on the mass hierarchy

9

Advantage of Fixed Target Missing Momentum Search

Dark Photon with a Fixed Target

- Fixed Target Signal Characteristics:
 - Dark bremsstrahlung A' production, invisible decay
 - A's take most of the beam energy; only visible final state particle is a soft recoil electron

11

Dark Photon with a Fixed Target

- Fixed Target Signal Characteristics:
 - Dark bremsstrahlung A' production, invisible decay
 - A's take most of the beam energy; only visible final state particle is a soft recoil electron

- Can probe this mechanism through a missing momentum search. We need...
 - High momentum resolution

Matt Solt

• High veto efficiency of SM backgrounds

LDMX Concept

- Missing momentum and energy approach e^-
 - DM production identified by missing energy/momentum in detector
 - Equipped for particle ID e/gamma
 - Recoil pT used as discriminator/identifier

LDMX Concept

- Missing momentum and energy approach ϵ
 - DM production identified by missing energy/momentum in detector
 - Equipped for particle ID e/gamma
 - Recoil pT used as discriminator/identifier

Must mitigate SM background

- Main background is SM bremsstrahlung
- Most challenging background is photo-nuclear (PN) reactions

LDMX Beamline

- 4 and 8 GeV e- beam provide by SLAC
 - **Parasitically** use the LCLS-II beam with a dedicated transfer line (LESA)
 - **Individual tagging** and reconstruction of up to 10¹⁶ e-
 - Low current, high repetition rate **37 MHz**, $\mu = 1$
 - Currently under construction, early commissioning in FY 24-25 with 4 GeV and LCLS-II 8 GeV upgrade in ~FY 27-28

LDMX Design

- Need hermetic, radiation tolerant detector designed for high beam rates
 - Tagging/recoil tracker: fast with high momentum resolution and large acceptance
 - **Electromagnetic calorimeter**: fast, good energy resolution, and high granularity
 - Hadronic calorimeter: high veto efficiency of neutral hadrons
 - **Trigger Scintillator**: scintillator bars provide fast count of incoming electrons

Tracker and Trigger Scintillator

- Tagging tracker
 - Measures incoming beam electron
- Recoil tracker (based on Heavy Photon Search design) arXiv:2212.10629v2
 - Measures recoil electron and vetoes extra particles
- Trigger Scintillator
 - Arrays of scintillator bars provide fast count of incoming electrons
 - \circ ~ Used an input to the missing energy trigger

Backgrounds

Electromagnetic Calorimeter

10.17181/CERN.IV8M.1JY2

- 40 X₀ Si-W sampling calorimeter (based on CMS HGCal upgrade)
 - Provides fast missing energy trigger
 - Dense, radiation hard, full shower containment, and high granularity

Ecal Veto

- More difficult to veto: Rare photon reactions that deposit low energy in the Ecal
 - Exploit longitudinal/transverse shower shapes and train a boosted decision tree (BDT)
 - High granularity Ecal enables MIP tracking

Backgrounds

Hadronic Calorimeter

- Sampling calorimeter with segmented plastic/steel
 - Readout by wavelength shifting fibers and SiPMs (based on the Mu2e Cosmic Ray Veto design)
 - Highly efficient veto for Photo-Nuclear (PN) processes that produce neutral hadrons.
 Desire 1e-6 rejection
 - Side HCal rejects wide angle brem and γ→μ+μ-

Backgrounds

- Irreducible SM backgrounds << 10⁻¹⁶
- Goal is backgroundfree experiment for 10¹⁶ EoT
- Multiple veto handles for most backgrounds

Hard Track

Extra Tracks

ECal Energy

ECal Feature

HCal Hits

Event Selection

- Require single low momentum track
- Require Ecal BDT > 0.99 & Hcal Max PE > 5
- Remaining background is eliminated by Ecal MIP tracking

	Photo-nuclear		Muon conversion	
	Target-area	ECal	Target-area	ECal
EoT equivalent	4×10^{14}	2.1×10^{14}	8.2×10^{14}	2.4×10^{15}
Total events simulated	8.8×10^{11}	4.65×10^{11}	6.27×10^8	8×10^{10}
Trigger, ECal total energy $< 1.5~{\rm GeV}$	1×10^8	2.63×10^8	$1.6 imes 10^7$	1.6×10^8
Single track with $p < 1.2 \mathrm{GeV}$	2×10^7	2.34×10^8	3.1×10^4	1.5×10^8
ECal BDT (> 0.99)	$9.4 imes 10^5$	1.32×10^5	< 1	< 1
HCal max $PE < 5$	< 1	10	< 1	< 1
ECal MIP tracks $= 0$	< 1	< 1	< 1	< 1

Signal vs. Background Kinematics

- Transverse momentum of recoil election is the last veto handle
- Currently not used in veto efficiency estimates, but as a backup discriminator in the case of unexpected background

• Larger mass signal -> larger recoil e- pT

Signal Kinematics

- Recoil electron transverse momentum can also be used to estimate and constrain DM mass scale
- Signal rate constrains the scale of the "y" parameter

28

LDMX Sensitivity

Phase 1: 4 GeV, 10¹⁴ electrons Phase 2: 8 GeV, 10¹⁶ electrons

arXiv:1808.05219

LDMX is based on existing technology from other experiments We are "shovel ready" to build LDMX

Matt Solt

CERN Test Beam

- Recent successful test beam at CERN PS in April 2022 with Hcal and trigger scintillator (TS) prototypes
- Demonstrated successful operations, readout & electronics, and basic physics capabilities of two subsystems

_ Hadronic Calorimeter (HCal) — Trigger scintillator (TS)

First steel absorber layer of the hadronic calorimeter

TS plastic scintillator --- encased in black tape -for light tightness --- TS readout electronics --

____ Gantry to adjust ____ position of TS in beamspot

Matt Solt

CERN Test Beam - Quad-bar Fabrication

Mu2e Cosmic Ray Veto (CRV) module factory at the **University of Virginia** used for Hcal quad-bar fabrication

arXiv:2302.09172

Wavelength-shifting fiber from Kuraray

CERN Test Beam

CERN PS T9 Beamline

Matt Solt

CERN Test Beam - Analysis

Muon Candidate **Pion Candidate** Beam & HCal orientation Apparent particle trajectory Vertical axis [mm] Hit candidates Vertical axis [mm] 200 0 Vertical -200 800 600 400 200 8²⁰ 0 8²⁰ Beam Horizontal 800 600 400 200 Beam axis Immi -200 Horizontal axis [mm] Horizontal axis [mm] 0

Preliminary results, data analysis is ongoing

Matt Solt

CERN Test Beam - Analysis

34

LDMX - Additional Physics Program

- LDMX offers a broader physics program beyond a missing momentum search for LDM
- Small angle acceptance (nearly hermetic) and fully reconstructing final and initial states allows for several unique measurements
 - Electro-nuclear scattering measurements of interest to neutrino experiments such as DUNE (right), can constrain neutrino production cross-sections
 - Searching for visibly decaying long-lived particles (next slide)

LDMX Visible Signatures

- LDMX is effectively an active beam dump; ideal for long-lived particles
- Possible to probe a sudden "appearance" of SM particles in Ecal/Hcal
 - Needs modified missing energy trigger
 - Mitigation of PN backgrounds (much like the standard missing momentum search)
 - \circ \quad Mitigation of brem conversions that penetrate deeply into the Ecal

LDMX Visible Signatures

- LDMX has competitive sensitivity for several models of interest to DM minimal dark photon, ALPs, SIMPs, etc.
- Updated projections with full simulation are nearing completion

Conclusion

- Thermal Dark Matter is a simple and compelling scenario, and the MeV-GeV scale is a good place to explore logical extension of WIMP
- LDMX provides a world-leading sensitivity to sub-GeV DM and can test many predictive LDM scenarios
- LDMX has impressive **physics discovery potential and guaranteed deliverables**
- The experiment is ready to move forward with the construction phase
- LDMX could be taking data in 2-3 years after establishing the funding profile and
- M make a major discovery shortly thereafter

40

Trigger Multi-Electron Bunches

PN Background Final State

Fixed Target Choices

LDMX Projections Detailed

LDMX Projections with Background

Matt Solt

LDMX Visible Signatures

- LDMX is effectively an active beam dump; ideal for long-lived particles
- Possible to probe a sudden "appearance" of SM particles in Ecal/Hcal
 - Needs modified missing energy trigger
 - Mitigation of PN backgrounds (much like the standard missing momentum search)

Matt Solt

• Mitigation of brem conversions that penetrate deeply into the Ecal

Dark Photon Signatures

Dark Photon Production

Dark Photon Decay

Both visible and **invisible** final states are allowed depending on the mass hierarchy

