

Samahang Pisika ng Pilipinas Physics Society of the Philippines

Exploring Light Dark Matter at Accelerators July 19, 2023 Matt Solt, University of Virginia

The Existence of Dark Matter

- There is clear evidence for the **existence of dark matter** (DM)
- The fundamental nature/origin of DM is a **central puzzle in particle physics**
- SM can't account for DM. What are some ideas for what DM could be?

Cosmic Microwave Background

Gravitational Lensing

A Thermal Relic

- 85% of the mass in the universe is dark matter, but astrophysical evidence of DM does not constrain the mass scale very well
- A thermal relic simple and predictive model of dark matter (DM)
- Thermal DM constrains DM mass to ~mass scale of SM particles

The range of DM mass spans a range of ~90 orders of magnitude! Thermal DM reduces this to ~7 orders of magnitude

arXiv:9506380

A Thermal Relic

- What is a thermal origin of DM?
 - 1. Assume DM was in thermal equilibrium with SM particles
 - **2.** The universe expands and cools such that DM pairs are no longer produced
 - 3. The universe expands and cools such that DM annihilations cease
- The present DM density Ω_{χ} is related to the DM annihilation cross-section $\langle \sigma v \rangle$

must yield ≤ 85% DM!

S

 $\langle \sigma v \rangle = 3 \times 10^{-26}$

A Thermal Relic - WIMPs and LDM

- WIMPs are well-motivated, but accessible parameter space is shrinking
- Increasing interest in expanding the thermal DM search to "Light" DM (LDM) in the MeV-GeV mass range
- LDM requires non-SM "portal" interaction due to the Lee-Weinberg Bound

Heavy (Dark) Photon Primer

Phys. Lett., B166:196–198

- An additional U'(1) symmetry proposed by B. Holdom 1985 - includes a massive dark photon (heavy photon or A')
- Kinetic mixing (ε) allows for A' mixing with SM photon: Effective coupling to electric charge
 - Allows for thermal contact of DM-SM in the early universe
 - Allows for us to exploit DM-SM interactions using experiments today
 - Thermal light dark matter models with dark photons are **very predictive**

indirect detection

lirect detection

6

Advantage of DM Production at Accelerators

Dark Photon Visible Parameter Space

 $2m_e < m_{A'} < 2m_{DM}$

- Theoretically motivated parameter space for A's that decay to SM particles - two parameter model (ɛ and mass)
- Highly motivated "thermal targets" contained in the red band

Dark Photon Visible Parameter Space

- Theoretically motivated parameter space for A's that decay to SM particles - two parameter model (ε and mass)
- Highly motivated "thermal targets" contained in the red band
- Highly motivated, yet unprobed region of parameter space
 - Small production cross-section
 - Short, but finite lifetime ("long-lived")

 $2m_e < m_{A'} < 2m_{DM}$

Dark Photon Visible Parameter Space

- Probing this region requires a new type of search for dark photons - a displaced vertex search
- HPS a fixed target precision vertexing experiment. Challenges:
 - Large prompt QED backgrounds
 - A' kinematics require sensitive detector components to be 0.5 mm from the beam

HPS Concept

- Fixed Target Signal Characteristics:
 - Dark bremsstrahlung A' production
 - A's take most of the beam energy, soft recoil electron
 - A's are very forward with **small opening for decay products**
 - HPS can vertex A's with mm-scale precision separates long-lived signal from prompt background

HPS Apparatus and CEBAF

20 cryomodule

Enhanced capabilities in existing Halls 20 cryomodules

Add 5

cryomodules

HPS

HPS is run at Jefferson Lab (Newport News, VA) using the CEBAF facility which provides a continuous, high current e- beam with small beam spot and beam tails (~10⁻⁶)

2016 Displaced Vertex Search Results

Optimal sensitivity is a factor of ~8 from exclusion at 90% confidence

Challenge: Distinguishing the prompt QED tridents from displaced signal (~1 signal for ~10⁶ prompt background) **Success**: Nearly zero-background search was achieved No exclusion to minimal dark photon model for this dataset, however **current datasets with upgrades...**

HPS Current Data and Status

- Analysis from 2015/2016 motivated **several simple upgrades**: additional tracking layer and upgraded trigger
- HPS is approved for 180 days of running: analysis from 2019 & 2021 runs are expected to yield exclusions, and **potential discovery**, of A's
- Other models of interest with long-lived particles: SIMPs, ALPs, etc.

Data Run	Beam Energy (GeV)	Beam Current (nA)	Beam Time	10^{-4} a_e HPS 2015 APEX 10^{-5} $a_{\mu\pm2\sigma}$ HPS 2015 APEX Test Ron Mainz BaBar
2015 Engineering Run	1.05	50	1.7 Days	
2016 Engineering Run	2.3	200	5.4 Days	10 ⁻⁸ Et41 HPS 2019+2021
2019 Physics Run (Upgraded)	4.55	~150	~4 Weeks	10 ⁻⁹
2021 Physics Run (Upgraded)	3.7	~120	~4 Weeks	Orssy/E137/CHARM/1070 HPS Simulation 10^{-2} 10^{-1} 10^{0} A' Mass (GeV)

Dark Photon Decays - Complementary Searches

Dark Photon with a Fixed Target - Invisible Decay

Matt Solt

- Fixed Target Signal Characteristics:
 - Dark bremsstrahlung A' production, invisible decay
 - A's take most of the beam energy; only visible final state particle is a soft recoil electron

- Can probe this mechanism via a missing momentum search. We need...
 - High momentum resolution
 - High veto efficiency of Standard Model backgrounds

17

LDMX Concept

- Missing momentum and energy approach
 - DM production identified by missing energy/momentum in detector
 - Individual tagging and reconstruction of up to 10¹⁶ electrons need low current, high repetition rate 37 MHz of O(1) electrons. Planned to run at SLAC End Station A
 - Backgrounds rejected by sampling calorimeters Ecal and Hcal

Missing Momentum Backgrounds

Goal: Achieve 0 background for 10¹⁶ electrons on target (EoT)

Large rate of bremmstrahlung. These are mitigated by Missing Energy Trigger in the Ecal

Photo-nuclear process (PN) are more rare but more challenging. These are mitigated by a high granularity Ecal and a deep Hcal

LDMX Design

- Need hermetic, radiation tolerant detector designed for high beam rates
 - Tagging/recoil tracker: fast with high momentum resolution and large acceptance
 - **Electromagnetic calorimeter**: fast, good energy resolution, and high granularity
 - Hadronic calorimeter: high veto efficiency of neutral hadrons
 - **Trigger Scintillator**: scintillator bars provide fast count of incoming electrons

LDMX Sensitivity

arXiv:1912.05535

All systems combined: < 1 background event with signal efficiency of ~30-50% for O(10¹⁴) EoT!

Phase 1: 4 GeV, 10¹⁴ electrons on target Phase 2: 8 GeV, 10¹⁶ electrons on target

$2m_{DM} < m_{A'}$

arXiv:1808.05219

LDMX is based on existing technology from other experiments (HPS, CMS, and Mu2e) We are "shovel ready" to build LDMX

Matt Solt

CERN Test Beam

- Recent successful test beam at CERN PS in April 2022 with Hcal and trigger scintillator (TS) prototypes
- Demonstrated successful operations, readout & electronics, and basic physics capabilities of two subsystems

Conclusion

• Thermal relic models offer **plausible** and **predictive** models of dark matter

Solt

- HPS is expected to probe in a highly motivated and untouched region of parameter space via a **displaced vertex search**
- LDMX can conclusively probe many models in the sub-GeV mass range through a missing momentum search

Heavy Photon Primer

- Bjorken, Essig, Schuster, Toro (B.E.S.T.) proposed several **fixed target** techniques to probe the A' parameter space motivated by DM Phys. R
- Highly motivated MeV-GeV parameter space DM

Phys. Rev., D80:075018

HPS Apparatus

- Electromagnetic Calorimeter (Ecal) provides e+etrigger with precision timing
- Silicon Vertex Tracker (SVT) measures trajectories of e+e- and **reconstructs mass and vertex position**
- Dipole magnet spreads e+e- pairs and provides curvature for momentum measurement

Target

Ecal

ρ-

SVT

e+

Electromagnetic Calorimeter (Ecal)

- Ecal made out of 442 lead tungstate (PbWO4) crystals and built by JLab/Orsay/INFN
- Split in top/bottom halves to avoid "wall of flame"
- Background is dominated by **electrons scattering in the target.** Trigger eliminates 10's MHz of these

Scattered Beam Background

Trigger selects on opposite top/bottom clusters:

- Cluster Time Difference
- Cluster Energy
- Cluster Energy Sum
- Cluster Energy Difference
- Cluster Coplanarity

HPS Silicon Vertex Tracker

- SVT measures trajectories of e+e- and reconstructs mass and vertex position
- 6 layers of silicon microstrips (~0.7% radiation length per layer)
- Each layer has axial/stereo strips for 3D hit position (50 or 100 mrad)
- SVT is split to avoid "sheet of flame"; Very large scattered beam backgrounds!
- Silicon is close to beam for good forward coverage (1/2 mm from the beam!)
- L4-L6 are double wide for acceptance purposes

Trident Backgrounds

• Radiative tridents

- Identical kinematics to A's; constitute an irreducible prompt background
- Provide reference for expected signal rate

 $\frac{d\sigma(e^-Z \to e^-Z(A' \to l^+l^-))}{d\sigma(e^-Z \to e^-Z(\gamma^* \to l^+l^-))} = \frac{3\pi\epsilon^2}{2N_{eff}\alpha} \frac{m_{A'}}{\delta m}$

• Bethe-Heitler (BH) tridents

- Softer e+e- pairs, but still dominates the signal region
- **Converted photons** in tracker or target
 - Simple cuts eliminate about 80% of these e+e- pairs with minimal signal loss
- Distinguishing the prompt QED tridents from
- displaced signal is the challenge of the analysis

Displaced Vertex Search Event Selection

- Displaced vertex search is blinded with the selection tuned on 10% data
- Two main backgrounds from prompt trident processes: large Coulomb scatters in layer 1 of the tracker and mis-tracking

 \circ $\hfill Require strict selections on track quality and vertex quality & require layer 1 hits$

Displaced Vertex Search Signal Region

HPS L1L1 Data/MC Comparison

32

HPS A's with Longer Livetimes

- A's with longer livetimes will have e+edaughters that may miss layer 1 of the tracker
- Divide analysis into L1L1 (both particles hit L1) and L1L2 (one particles misses L1) categories
- Additional backgrounds for L1L2
 - Hit inefficiencies
 - Large Coulomb scatters in inactive Si
 - Brem conversion in tracker Si
- L1L1 category was shown previously. L1L2 was recently unblinded, but is not public yet
- L1L1 + L1L2 combined result will be the final result

Jefferson Lab and CEBAF

- JLab (Newport News, VA) has the Continuous Electron Beam Accelerator Facility (CEBAF) that can simultaneously deliver intense **continuous** electron beams of different energies to 4 halls
- 2.2 GeV per pass up to 12 GeV and 2 ns bunch pulse
- **Provides small beam spot with small tails** (~10⁻⁶)

Anytime you can produce a photon, you can produce a dark photon

Advantage of Fixed Target Missing Momentum Search

Matt Solt

Signal Kinematics

- Transverse momentum of recoil election is the last veto handle
- Currently not used in veto efficiency estimates, but as a backup discriminator
- Transverse momentum can also be used to estimate/constrain DM mass scale

LDMX Visible Signatures

- Broad physics potential for LDMX beyond missing momentum search
 - Displaced visible decays minimal dark photon, ALPs, SIMPs, etc.
 - Electronuclear measurements for neutrino physics

Tracker and Trigger Scintillator

- Tagging tracker
 - Measures incoming beam electron
- Recoil tracker (based on Heavy Photon Search design) arXiv:2212.10629v2
 - Measures recoil electron and vetoes extra particles
- Trigger Scintillator
 - Arrays of scintillator bars provide fast count of incoming electrons
 - \circ ~ Used an input to the missing energy trigger

Electromagnetic Calorimeter

10.17181/CERN.IV8M.1JY2

- 40 X₀ Si-W sampling calorimeter (based on CMS HGCal upgrade)
 - Provides fast missing energy trigger
 - Dense, radiation hard, full shower containment, and high granularity

41

Matt Solt

Ecal Veto

- More difficult to veto: Rare photon reactions that deposit low energy in the Ecal
 - Exploit longitudinal/transverse shower shapes and train a boosted decision tree (BDT)
 - High granularity Ecal enables MIP tracking

Ecal/Hcal Vetoes

- Ecal BDT > 0.99
- Hcal max PEs is > 5

Hadronic Calorimeter

- Sampling calorimeter with segmented plastic/steel
 - Readout by wavelength shifting fibers and SiPMs (based on the Mu2e Cosmic Ray Veto design)
 - Highly efficient veto for Photo-Nuclear (PN) processes that produce neutral hadrons.
 Desire 1e-6 rejection
 - Side HCal rejects wide angle brem and γ→μ+μ-

