

Detecting Dark Matter with the Light Dark Matter eXperiment

Jessica Pascadlo, University of Virginia On Behalf of the LDMX Collaboration June 22, 2022

Light Dark Matter

- General interest in expanding dark matter (DM) search to sub-GeV range
 - Thermal relic DM model works for keV to TeV range
- Two categories for thermal dark matter: WIMPs & LDM
 - Accessible parameter space for WIMPs is dwindling, leading to the rise of "light" dark matter research
- Simplest prediction has dark photon (A') mix with SM photon
- Accelerators provide a generic probe for light dark matter in fixed-target measurements

DM Production & Kinematics

- Few DM signal characteristics for a fixed target
 - A's being produced by "dark" bremsstrahlung process
 - Large drop in energy of beam electron (taken away by A' production)
 - Leads to a "soft" recoil electron, the only visible final state particle
- Can probe these with missing momentum search! Just need:
 - High momentum resolution
 - High veto efficiency for SM backgrounds

Jessica Pascadlo | New Perspectives

LDMX Concept

- Look for missing momentum and energy in recoil electron
 - \circ Also use detectors to identify the missing momentum & energy \rightarrow DM production!
 - Particle ID
 - Transverse momentum of recoil e⁻ used as discriminator/identifier
- e⁻ beam provided by SLAC
 - Planning on 4 GeV and 8 GeV runs
- Must be able to tag and reconstruct every electron
 - Do this for up to 1e16 electrons
 - Use low current, high repetition rate of 37 MHz, μ = 1

LDMX Design

- Detector must be designed to withstand high radiation doses and high rates
- Missing energy trigger at E < 1.5 GeV
- Optimized detector for main search technique (missing momentum), but is also sensitive to:
 - Displaced visible signatures (dark sector physics more on that later)
 - Electronuclear measurements (neutrino physics)

Backgrounds

- With all systems combined, < 1 background event
 - Signal efficiency of ~30%-50% for O(1e14) electrons on target (EoT)
- Recall that transverse momentum of recoil electron is another discriminator for backgrounds
- See LDMX Photon Veto Paper for more information: <u>arXiv:1912.05535</u>

	Photo-nuclear		Muon conversion	
	Target-area	ECal	Target-area	ECal
EoT equivalent	4×10^{14}	2.1×10^{14}	8.2×10^{14}	2.4×10^{15}
Total events simulated	8.8×10^{11}	4.65×10^{11}	6.27×10^8	8×10^{10}
Trigger, ECal total energy $< 1.5~{\rm GeV}$	1×10^8	2.63×10^8	$1.6 imes 10^7$	$1.6 imes 10^8$
Single track with $p < 1.2 \mathrm{GeV}$	2×10^7	2.34×10^8	3.1×10^4	$1.5 imes 10^8$
ECal BDT (> 0.99)	$9.4 imes 10^5$	1.32×10^5	< 1	< 1
HCal max $PE < 5$	< 1	10	< 1	< 1
ECal MIP tracks = 0	< 1	< 1	< 1	< 1

Sensitivity

- Benchmark thermal relics are in black
- "Phase 1" corresponds to 4 x 10¹⁴ EoT and 4 GeV beam
- "Phase 2" corresponds to 10¹⁶ EoT and 8 GeV beam
- See more in LDMX Snowmass paper: <u>arXiv:2203.08192</u>

Visible Signatures

- LDMX also able to constrain visible decays
- Plenty of technical challenges
 - Background studies not expected to be a background-free analysis
 - Determining the best visibles trigger for a high efficiency and low rate

Visibles Trigger - High Efficiency, Low Rate

- For standard search, already have missing energy trigger
 - This will not capture visible A' decays
- Goal is to have 100 Hz trigger rate
 for visibles search

Visibles and standard LDMX trigger efficiencies for different A' masses

- Progress in this trigger at UVA
- Current work shows that a visibles trigger with a low rate and high efficiency is viable

- Displaced visible decays can be explored with LDMX
 - Reach plots below, for 8 GeV and 16 GeV beam
 - Minimal dark photon, ALPs, SIMPs, etc.
- Background studies need to be completed
 - Most concerned about hard neutrons (from PN) and late secondary photon conversions
- See more in LDMX Pheno Paper: <u>arXiv:1807.01730</u>

Conclusion

- Thermal relic models hold great promise for discovering dark matter
 - Phase space covered by WIMPs shrinking quickly
 - Sub-GeV mass range is becoming increasingly popular area to search as complement to WIMPs
- LDMX will be well equipped to find signature of dark matter
- Also able to probe other areas of interest to the community
 - Displaced visible signatures
 - Electronuclear measurements (possibly useful to experiments like DUNE)

2020	2023	2025	2027	
Detector R&D	Construction	Phase I data taking	Phase II construction & operation	

Missing Energy Trigger (Backup)

- Requiring a low energy deposition trigger sufficiently mitigates the largest backgrounds (bremsstrahlung conversions, tridents, etc.)
- Missing Energy Trigger has large signal efficiency

Tracker and Trigger Scintillator (Backup)

- Tagging tracker
 - Measures incoming beam electron
- Recoil tracker (based on HPS design)
 - Measures recoil electron and vetoes extra particles
- Trigger Scintillator
 - Arrays of scintillator bars provide fast count of incoming electrons
 - Used an input to the missing energy trigger

Electromagnetic Calorimeter (Backup)

- 40 X₀ Si-W sampling calorimeter (based on CMS High Granularity Calorimeter upgrade)
 - \circ $\$ Ideal because it is dense, radiation hard, and has full shower containment
 - Provides the fast missing energy trigger
 - Recoil electron energy < 1.5 GeV
 - Capable of MIP tracking
 - High granularity uses both transverse and longitudinal shower shapes to reject backgrounds
 - Typical backgrounds vetoed are photons and charged particles

Hadronic Calorimeter (Backup)

- Layered absorber (steel) and scintillator (plastic) calorimeter
 - Scintillators are read out using wavelength-shifting fibers and SiPMs
 - Based on Mu2e Cosmic Ray Veto design
 - Highly efficient and optimized veto for photonuclear processes that produce neutral hadrons
 - Strive for 1e-6 rejection
 - Side Hcal (part around the Ecal) rejects wide-angle bremsstrahlung and $\gamma \rightarrow \mu + \mu$ -
 - Back Hcal rejects neutral particles

A' Simulations (Backup)

- Plots from simulation where A' are produced at target and have a uniform chance of decaying at any point along the path
 - Mass of A' = 50 MeV in this simulation
- Full A' acceptance in both Ecal and Hcal
 - Based on known sizes of both calorimeters

