

Improving Neutrino Interaction Modeling with Electron Scattering Measurements in LDMX

Laura Zichi Mentors: Shirley Li & Wes Ketchum New Perspectives 16 August 2021 Laura Zichi | New Perspectives

Neutrino Oscillations

- Deep Underground Neutrino Experiment (DUNE)
- Probability of neutrino flavor varies as it propagates
 - Flavors: v_e, v_μ, v_τ
- Further understand neutrino's role in universe and matter/antimatter asymmetry

csulb.edu

Fermilab

dunescience.org

Neutrino Nucleus Interaction

C.Wilkinson, 2020

Analogous Electron Nucleus Interaction

- Nuclear physics similarities
- Known incoming electron energy and angle
- Focus on FSI
 - Energy loss of propagating particles, hadronic interactions

Neutrino nucleus interaction

Electron nucleus interaction

Light Dark Matter eXperiment (LDMX)

A. Ankowski et al., 2020

Light Dark Matter eXperiment (LDMX)

A. Ankowski et al., 2020

GENIE Event Generator

- Software library producing simulated electron/neutrino nucleus interactions
- Probing different FSI model uncertainties
 - Fractional Charge Exchange [FrCEx]
 - Fractional Absorption [FrAbs]
 - Fractional Inelastic Collisions [FrInel]
 - Fractional Pion Production [FrPiProd]
- FSI parameters varied at level of 1σ uncertainty

FrCEx_N: $p \rightarrow n + p$	FrCEx_pi: $\pi^+ \rightarrow \pi^0 + p$
FrAbs_N: $p \rightarrow 21n + 21p$	FrAbs_pi: $\pi^+ \rightarrow n + p$
Frinel_N:	Frinel_pi:
$n \rightarrow 2n$	$\pi^+ \rightarrow \pi^+ + p$
FrPiProd_N:	FrPiProd_pi:
$n \rightarrow \pi^- + n + p$	$\pi^+ \rightarrow 2 \pi^0 + p$

UNIVERSAL NEUTRINO GENERATOR & GLOBAL FIT

ie-mc.org.

Potential Observables and Chi Squared

LEPTON

- Energy
- **Kinetic Energy**
- Momentum

🚰 Fermilab

🕻 🛟 🛱 Fermilab

Multiplicity

Effective Observables $\left[\frac{\chi^2}{dof} > 1\right]$

Fractional pion inelastic collision on multiplicity of all outgoing protons

Leading $cos(\theta)$

Before Detector Cuts

After Detector Cuts

Effective Observables $\left[\frac{\chi^2}{dof} > 1\right]$

Fractional pion absorption on $\cos{(\theta)}$ of outgoing leading π^+

Further Distinctions with Lepton Kinematics

Constrain FSI model uncertainties with lepton kinematics

Fractional pion absorption on $\cos{(\theta)}$ of outgoing leading π^+

🛟 Fermilab

Next Steps

- Increased sample size
- Further probing of current FSI model parameters
 - More sophisticated lepton/hadron kinematics
- Different FSI model examination
- Non FSI model examination

Integrate full LDMX simulation

A. Ankowski et al., 2020

Conclusion

Powerful LDMX detector → Understand FSI of electron nucleus scattering → Understand FSI of neutrino nucleus scattering → Advanced neutrino detector sensitivity → Increase understanding of universe composition

Nobelprize.org

References

T. Akesson et al. (LDMX), arXiv:1808.05219 (2018).

A. Ankowski et al., Phys. Rev. D 101, 053004 (2020).

(v3.0.6) C. Andreopoulos et al., NIM A 614, 87 (2010).

C. Andreopoulos, et al., arXiv:1510.05494 [hep-ph] (2015).

Kinetic Energy

Effective Observables $\left[\frac{\chi^2}{dof} > 1\right]$

Fractional nucleon charge exchange on all outgoing protons

Fractional pion absorption on $cos(\theta)$ of all outgoing π^+

GENIE Weighting Check

